25 research outputs found
Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces
We demonstrate a new type of optomechanical system employing a movable,
micron-scale waveguide evanescently-coupled to a high-Q optical microresonator.
Micron-scale displacements of the waveguide are observed for
milliwatt(mW)-level optical input powers. Measurement of the spatial variation
of the force on the waveguide indicates that it arises from a cavity-enhanced
optical dipole force due to the stored optical field of the resonator. This
force is used to realize an all-optical tunable filter operating with sub-mW
control power. A theoretical model of the system shows the maximum achievable
force to be independent of the intrinsic Q of the optical resonator and to
scale inversely with the cavity mode volume, suggesting that such forces may
become even more effective as devices approach the nanoscale.Comment: 4 pages, 5 figures. High resolution version available at
  (http://copilot.caltech.edu/publications/CEODF_hires.pdf). For associated
  movie, see (http://copilot.caltech.edu/research/optical_forces/index.htm
Radiation-pressure cooling and optomechanical instability of a micro-mirror
Recent experimental progress in table-top experiments or gravitational-wave
interferometers has enlightened the unique displacement sensitivity offered by
optical interferometry. As the mirrors move in response to radiation pressure,
higher power operation, though crucial for further sensitivity enhancement,
will however increase quantum effects of radiation pressure, or even jeopardize
the stable operation of the detuned cavities proposed for next-generation
interferometers. The appearance of such optomechanical instabilities is the
result of the nonlinear interplay between the motion of the mirrors and the
optical field dynamics. In a detuned cavity indeed, the displacements of the
mirror are coupled to intensity fluctuations, which modifies the effective
dynamics of the mirror. Such "optical spring" effects have already been
demonstrated on the mechanical damping of an electromagnetic waveguide with a
moving wall, on the resonance frequency of a specially designed flexure
oscillator, and through the optomechanical instability of a silica
micro-toroidal resonator. We present here an experiment where a
micro-mechanical resonator is used as a mirror in a very high-finesse optical
cavity and its displacements monitored with an unprecedented sensitivity. By
detuning the cavity, we have observed a drastic cooling of the micro-resonator
by intracavity radiation pressure, down to an effective temperature of 10 K. We
have also obtained an efficient heating for an opposite detuning, up to the
observation of a radiation-pressure induced instability of the resonator.
Further experimental progress and cryogenic operation may lead to the
experimental observation of the quantum ground state of a mechanical resonator,
either by passive or active cooling techniques
Considerable Enhancement of Field Emission of SnO2Nanowires by Post-Annealing Process in Oxygen at High Temperature
The field emission properties of SnO2nanowires fabricated by chemical vapor deposition with metallic catalyst-assistance were investigated. For the as-fabricated SnO2nanowires, the turn-on and threshold field were 4.03 and 5.4 V/μm, respectively. Considerable enhancement of field emission of SnO2nanowires was obtained by a post-annealing process in oxygen at high temperature. When the SnO2nanowires were post-annealed at 1,000 °C in oxygen, the turn-on and threshold field were decreased to 3.77 and 4.4 V/μm, respectively, and the current density was increased to 6.58 from 0.3 mA/cm2at the same applied electric field of 5.0 V/μm
Experimental realization of on-chip topological nanoelectromechanical metamaterials
Topological mechanical metamaterials translate condensed matter phenomena,
like non-reciprocity and robustness to defects, into classical platforms. At
small scales, topological nanoelectromechanical metamaterials (NEMM) can enable
the realization of on-chip acoustic components, like unidirectional waveguides
and compact delay-lines for mobile devices. Here, we report the experimental
realization of NEMM phononic topological insulators, consisting of
two-dimensional arrays of free-standing silicon nitride (SiN) nanomembranes
that operate at high frequencies (10-20 MHz). We experimentally demonstrate the
presence of edge states, by characterizing their localization and Dirac
cone-like frequency dispersion. Our topological waveguides also exhibit
robustness to waveguide distortions and pseudospin-dependent transport. The
suggested devices open wide opportunities to develop functional acoustic
systems for high-frequency signal processing applications
