4,140 research outputs found

    Centrality, system size and energy dependences of charged-particle pseudo-rapidity distribution

    Full text link
    Utilizing the three-fireball picture within the quark combination model, we study systematically the charged particle pseudorapidity distributions in both Au+Au and Cu+Cu collision systems as a function of collision centrality and energy, sNN=\sqrt{s_{NN}}= 19.6, 62.4, 130 and 200 GeV, in full pseudorapidity range. We find that: (i)the contribution from leading particles to dNch/dηdN_{ch}/d\eta distributions increases with the decrease of the collision centrality and energy respectively; (ii)the number of the leading particles is almost independent of the collision energy, but it does depend on the nucleon participants NpartN_{part}; (iii)if Cu+Cu and Au+Au collisions at the same collision energy are selected to have the same NpartN_{part}, the resulting of charged particle dN/dηdN/d\eta distributions are nearly identical, both in the mid-rapidity particle density and the width of the distribution. This is true for both 62.4 GeV and 200 GeV data. (iv)the limiting fragmentation phenomenon is reproduced. (iiv) we predict the total multiplicity and pseudorapidity distribution for the charged particles in Pb+Pb collisions at sNN=5.5\sqrt{s_{NN}}= 5.5 TeV. Finally, we give a qualitative analysis of the Nch/N_{ch}/ and dNch/dη/η0dN_{ch}/d\eta/|_{\eta\approx0} as function of sNN\sqrt{s_{NN}} and NpartN_{part} from RHIC to LHC.Comment: 12 pages, 8 figure

    Population Genetic Structure of Monimopetalum chinense (Celastraceae), an Endangered Endemic Species of Eastern China

    Get PDF
    • Background and Aims Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. • Methods One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). • Key Results A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp = 0·183) and at the population level (Ipop = 0·083). High clonal diversity (D = 0·997) was found, and strong genetic differentiation among populations was detected (49·06 %). • Conclusions Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the specie

    Bis[dieth­yl(hy­droxy)ammonium] benzene-1,4-dicarboxyl­ate

    Get PDF
    In the centrosymmetric title compound, 2C4H12NO+·C8H4O4 2−, two N,N-dieth­yl(hy­droxy)ammonium cations are linked to a benzene-1,4-dicarboxyl­ate dianion by a combination of O—H⋯O and N—H⋯O hydrogen bonds, which can be described in graph-set terminology as R 2 2(7). The crystal structure is further stabilized by C—H⋯O hydrogen bonds, leading to the fomation of a ribbon-like network

    Deviation analysis of rotational inertia measurement based on torsion bar method

    Get PDF
    The test of moment of inertia has a wide range of applications in aerospace, vehicle engineering, precision machinery, motors and other fields, moment of inertia directly affects the reliability and performance of components or equipment, it is very essential to test the moment of inertia. By analyzing the principle of moment of inertia test, we could come to the conclusion that the theoretical value, the inertia of the disk, the period of the torsion swing of the standard body and the period of the empty disk of the moment of inertia and the moment of inertia of the standard body. By analyzing the measurement error, position error and damping during the test, we could reach the following conclusion that the test accuracy of the moment of inertia can reach 0.1 %

    Centrality dependence of pTp_{T} spectra for identified hadrons in Au+Au and Cu+Cu collisions at sNN=200\sqrt{s_{NN}}= 200 GeV

    Full text link
    The centrality dependence of transverse momentum spectra for identified hadrons at midrapidity in Au+Au collisions at sNN=200\sqrt{s_{NN}}= 200 GeV is systematically studied in a quark combination model. The pT\mathrm{{p}_{T}} spectra of π±\pi^{\pm}, K±K^{\pm}, p(pˉ)p(\bar{p}) and Λ(Λˉ)\Lambda(\bar{\Lambda}) in different centrality bins and the nuclear modification factors (RCPR_{CP}) for these hadrons are calculated. The centrality dependence of the average collective transverse velocity for the hot and dense quark matter is obtained in Au+Au collisions, and it is applied to a relative smaller Cu+Cu collision system. The centrality dependence of pT\mathrm{{p}_{T}} spectra and the RCPR_{CP} for π0\pi^{0}, Ks0K_{s}^{0} and Λ\Lambda in Cu+Cu collisions at sNN=200\sqrt{s_{NN}}= 200 GeV are well described. The results show that <β(r)><\beta (r)> is only a function of the number of participants NpartN_{part} and it is independent of the collision system.Comment: 7 pages, 6 figure

    Protective effect of ginsenoside Rg1 on 661W cells exposed to oxygen-glucose deprivation/reperfusion via keap1/nrf2 pathway

    Get PDF
    AIM: To construct an in vitro model of oxygen-glucose deprivation/reperfusion (OGD/R) induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion (I/R) injury in 661W cells and the protective effect of ginsenoside Rg1. METHODS: The 661W cells were treated with different concentrations of Na2S2O4 to establish OGD/R model in vitro. Apoptosis, intracellular reactive oxygen species (ROS) levels and superoxide dismutase (SOD) levels were measured at different time points during the reperfusion injury process. The injury model was pretreated with graded concentrations of ginsenoside Rg1. Real-time polymerase chain reaction (PCR) was used to measure the expression levels of cytochrome C (cyt C)/B-cell lymphoma-2 (Bcl2)/Bcl2 associated protein X (Bax), heme oxygenase-1 (HO-1), caspase9, nuclear factor erythroid 2-related factor 2 (nrf2), kelch-like ECH-associated protein 1 (keap1) and other genes. Western blot was used to detect the expression of nrf2, phosphorylated nrf2 (pnrf2) and keap1 protein levels. RESULTS: Compared to the untreated group, the cell activity of 661W cells treated with Na2S2O4 for 6 and 8h decreased (P<0.01). Additionally, the ROS content increased and SOD levels decreased significantly (P<0.01). In contrast, treatment with ginsenoside Rg1 reversed the cell viability and SOD levels in comparison to the Na2S2O4 treated group (P<0.01). Moreover, Rg1 reduced the levels of caspase3, caspase9, and cytC, while increasing the Bcl2/Bax level. These differences were all statistically significant (P<0.05). Western blot analysis showed no significant difference in the protein expression levels of keap1 and nrf2 with Rg1 treatment, however, Rg1 significantly increased the ratio of pnrf2/nrf2 protein expression compared to the Na2S2O4 treated group (P<0.001). CONCLUSION: The OGD/R process is induced in 661W cells using Na2S2O4. Rg1 inhibits OGD/R-induced oxidative damage and alleviates the extent of apoptosis in 661W cells through the keap1/nrf2 pathway. These results suggest a potential protective effect of Rg1 against retinal I/R injury

    A Search for Radio Pulsars in Supernova Remnants Using FAST with One Pulsar Discovered

    Full text link
    We report on the results of a search for radio pulsars in five supernova remnants (SNRs) with FAST. The observations were made using the 19-beam receiver in the Snapshot mode. The integration time for each pointing is 10 min. We discovered a new pulsar PSR J1845-0306 which has a spin period of 983.6 ms and a dispersion measure of 444.6±\pm2.0 cm3^{-3} pc in observations of SNR G29.6+0.1. To judge the association between the pulsar and the SNR, further verification is needed. We also re-detected some known pulsars in the data from SNRs G29.6+0.1 and G29.7-0.3. No pulsars were detected in observations of other three SNRs.Comment: 6 pages, 2 figures, 2 tables published in CP

    UBR4 deficiency causes male sterility and testis abnormal in Drosophila

    Get PDF
    IntroductionIt has been established that UBR4 encodes E3 ubiquitin ligase, which determines the specificity of substrate binding during protein ubiquitination and has been associated with various functions of the nervous system but not the reproductive system. Herein, we explored the role of UBR4 on fertility with a Drosophila model.MethodsDifferent Ubr4 knockdown flies were established using the UAS/GAL4 activating sequence system. Fertility, hatchability, and testis morphology were studied, and bioinformatics analyses were conducted. Our results indicated that UBR4 deficiency could induce male sterility and influent egg hatchability in Drosophila.ResultsWe found that Ubr4 deficiency affected the testis during morphological analysis. Proteomics analysis indicated 188 upregulated proteins and 175 downregulated proteins in the testis of Ubr4 knockdown flies. Gene Ontology analysis revealed significant upregulation of CG11598 and Sfp65A, and downregulation of Pelota in Ubr4 knockdown flies. These proteins were involved in the biometabolic or reproductive process in Drosophila. These regulated proteins are important in testis generation and sperm storage promotion. Bioinformatics analysis verified that UBR4 was low expressed in cryptorchidism patients, which further supported the important role of UBR4 in male fertility.DiscussionOverall, our findings suggest that UBR4 deficiency could promote male infertility and may be involved in the protein modification of UBR4 by upregulating Sfp65A and CG11598, whereas downregulating Pelota protein expression

    Steroid-associated hip joint collapse in bipedal emus

    Get PDF
    In this study we established a bipedal animal model of steroid-associated hip joint collapse in emus for testing potential treatment protocols to be developed for prevention of steroid-associated joint collapse in preclinical settings. Five adult male emus were treated with a steroid-associated osteonecrosis (SAON) induction protocol using combination of pulsed lipopolysaccharide (LPS) and methylprednisolone (MPS). Additional three emus were used as normal control. Post-induction, emu gait was observed, magnetic resonance imaging (MRI) was performed, and blood was collected for routine examination, including testing blood coagulation and lipid metabolism. Emus were sacrificed at week 24 post-induction, bilateral femora were collected for micro-computed tomography (micro-CT) and histological analysis. Asymmetric limping gait and abnormal MRI signals were found in steroid-treated emus. SAON was found in all emus with a joint collapse incidence of 70%. The percentage of neutrophils (Neut %) and parameters on lipid metabolism significantly increased after induction. Micro-CT revealed structure deterioration of subchondral trabecular bone. Histomorphometry showed larger fat cell fraction and size, thinning of subchondral plate and cartilage layer, smaller osteoblast perimeter percentage and less blood vessels distributed at collapsed region in SAON group as compared with the normal controls. Scanning electron microscope (SEM) showed poor mineral matrix and more osteo-lacunae outline in the collapsed region in SAON group. The combination of pulsed LPS and MPS developed in the current study was safe and effective to induce SAON and deterioration of subchondral bone in bipedal emus with subsequent femoral head collapse, a typical clinical feature observed in patients under pulsed steroid treatment. In conclusion, bipedal emus could be used as an effective preclinical experimental model to evaluate potential treatment protocols to be developed for prevention of ON-induced hip joint collapse in patients
    corecore