1,984 research outputs found

    A quantitative link between microplastic instability and macroscopic deformation behaviors in metallic glasses

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A quantitative link between microplastic instability and macroscopic deformation behaviors in metallic glasses

    Get PDF
    Based on mechanical instability of individual shear transformation zones (STZs), a quantitative link between the microplastic instability and macroscopic deformation behavior of metallic glasses was proposed. Our analysis confirms that macroscopic metallic glasses comprise a statistical distribution of STZ embryos with distributed values of activation energy, and the microplastic instability of all the individual STZs dictates the macroscopic deformation behavior of amorphous solids. The statistical model presented in this paper can successfully reproduce the macroscopic stress-strain curves determined experimentally and readily be used to predict strain-rate effects on the macroscopic responses with the availability of the material parameters at a certain strain rate, which offer new insights into understanding the actual deformation mechanism in amorphous solids. © 2009 American Institute of Physics.published_or_final_versio

    Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene

    Get PDF
    We investigate electronic transport in high mobility (\textgreater 100,000 cm2^2/V\cdots) trilayer graphene devices on hexagonal boron nitride, which enables the observation of Shubnikov-de Haas oscillations and an unconventional quantum Hall effect. The massless and massive characters of the TLG subbands lead to a set of Landau level crossings, whose magnetic field and filling factor coordinates enable the direct determination of the Slonczewski-Weiss-McClure (SWMcC) parameters used to describe the peculiar electronic structure of trilayer graphene. Moreover, at high magnetic fields, the degenerate crossing points split into manifolds indicating the existence of broken-symmetry quantum Hall states.Comment: Supplementary Information at http://jarilloherrero.mit.edu/wp-content/uploads/2011/04/Supplementary_Taychatanapat.pd

    Measurement of finite-frequency current statistics in a single-electron transistor

    Get PDF
    Electron transport in nano-scale structures is strongly influenced by the Coulomb interaction which gives rise to correlations in the stream of charges and leaves clear fingerprints in the fluctuations of the electrical current. A complete understanding of the underlying physical processes requires measurements of the electrical fluctuations on all time and frequency scales, but experiments have so far been restricted to fixed frequency ranges as broadband detection of current fluctuations is an inherently difficult experimental procedure. Here we demonstrate that the electrical fluctuations in a single electron transistor (SET) can be accurately measured on all relevant frequencies using a nearby quantum point contact for on-chip real-time detection of the current pulses in the SET. We have directly measured the frequency-dependent current statistics and hereby fully characterized the fundamental tunneling processes in the SET. Our experiment paves the way for future investigations of interaction and coherence induced correlation effects in quantum transport.Comment: 7 pages, 3 figures, published in Nature Communications (open access

    Confined conversion of CuS nanowires to CuO nanotubes by annealing-induced diffusion in nanochannels

    Get PDF
    Copper oxide (CuO) nanotubes were successfully converted from CuS nanowires embedded in anodic aluminum oxide (AAO) template by annealing-induced diffusion in a confined tube-type space. The spreading of CuO and formation of CuO layer on the nanochannel surface of AAO, and the confinement offered by AAO nanochannels play a key role in the formation of CuO nanotubes

    Using electric current to surpass the microstructure breakup limit

    Get PDF
    The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones

    Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases

    Get PDF
    Increasing studies have shown that the interactions between microRNAs (miRNAs) and environmental factors (EFs) play critical roles in determining phenotypes and diseases. In this study, we revealed a number of important biological insights by analyzing and modeling of miRNA-EF interactions and their relationships with human diseases. We demonstrated that the miRNA signatures of EFs could provide new information on EFs. More importantly, we quantitatively showed that the miRNA signatures of drug/radiation could be used as indicators for evaluating the results of cancer treatments. Finally, we developed a computational model that could efficiently identify the possible relationship between EF and human diseases. Meanwhile, we provided a website (http://cmbi.hsc.pku.edu.cn/miren) for the main results of this study. This study elucidates the mechanisms of EFs, presents a framework for predicting the results of cancer treatments, and develops a model that illustrates the relationships between EFs and human diseases

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)
    corecore