662 research outputs found

    Shredding energy consumption of GFRP composite waste

    Get PDF
    This work investigated effect of glass fibre fabric structures, feedstock feed rate and screen size on specific shredding energy of glass fibre reinforced plastics (GFRP) waste via a two-level factorial design of experiment study. Four types of fabric structure, i.e. unidirectional (UD), biaxial (BIAX), triaxial (TRIAX) and chopped strand mat (CSM), were impregnated separately with unsaturated polyester resin to manufacture GFRP plates. The shredding energy was measured using a two-wattmeter approach. During shredding, CSM demonstrated a relatively flat power consumption curve compared to other fabric types. It was also noticed that the GFRP plate reinforced with more complex woven structure, i.e. TRIAX, required higher energy for shredding, especially with a combination of high feed rate and small screen size. It was found that mechanical efficiency was only around 8.2-15.7% and 0.8-2.2% for shredding at feed rate of 60 kg/hr and 10 kg/hr respectively. It was also found that adopting a larger screen size and lower feed rate could reduce the specific shredding energy

    Relativistic Mass Ejecta from Phase-transition-induced Collapse of Neutron Stars

    Full text link
    We study the dynamical evolution of a phase-transition-induced collapse neutron star to a hybrid star, which consists of a mixture of hadronic matter and strange quark matter. The collapse is triggered by a sudden change of equation of state, which result in a large amplitude stellar oscillation. The evolution of the system is simulated by using a 3D Newtonian hydrodynamic code with a high resolution shock capture scheme. We find that both the temperature and the density at the neutrinosphere are oscillating with acoustic frequency. However, they are nearly 180∘^{\circ} out of phase. Consequently, extremely intense, pulsating neutrino/antineutrino fluxes will be emitted periodically. Since the energy and density of neutrinos at the peaks of the pulsating fluxes are much higher than the non-oscillating case, the electron/positron pair creation rate can be enhanced dramatically. Some mass layers on the stellar surface can be ejected by absorbing energy of neutrinos and pairs. These mass ejecta can be further accelerated to relativistic speeds by absorbing electron/positron pairs, created by the neutrino and antineutrino annihilation outside the stellar surface. The possible connection between this process and the cosmological Gamma-ray Bursts is discussed.Comment: 40 pages, 11 figures, accepted for publication in JCA

    Research of Curve Fitting Method on the Measured Settlement of Tanks

    Get PDF
    AbstractThe settlement data of oil storage tanks made of steel are measured by the measurement points located around the base of the tank wall. The measured settlement data need to be curve fitted in order to reflect the settlement distribution around the whole tank wall base. Considering about the disadvantage of measured settlement data treatment methods on tanks in current standards, an optimization method of curve fitting on the measured settlement data is presented. The Fourier series expansion is used to analyze the measured settlement data, the fitting curves and mean square error according to different order are obtained. The fitting curve with minimum mean square error is selected as the most appropriate one that reflects the actual displacement of the tank base. The optimization method of curve fitting present is applied to analyze the measured settlement data obtained from the floating roof tank and the fixed roof tank. Results show that different effects can be obtained with different order of the fitting curve. Curve fitting referring to different order is necessary to the measured settlement data in actual engineering in order to find the most appropriate one that reflects the real tank base displacement distribution

    The flavor-changing bottom-strange quark production in the littlest Higgs model with T parity at the ILC

    Full text link
    In the littlest Higgs model with T-parity (LHT) the mirror quarks induce the special flavor structures and some new flavor-changing (FC) couplings which could greatly enhance the production rates of the FC processes. We in this paper study some bottom and anti-strange production processes in the LHT model at the International Linear Collider (ILC), i.e., e+e−→bsˉe^+e^-\rightarrow b\bar{s} and γγ→bsˉ\gamma\gamma\rightarrow b\bar{s}. The results show that the production rates of these processes are sizeable for the favorable values of the parameters. Therefore, it is quite possible to test the LHT model or make some constrains on the relevant parameters of the LHT through the detection of these processes at the ILC.Comment: 12 pages, 8 figure

    Effect of nano-carbon particle doping on the flux pinning properties of MgB2 superconductor

    Full text link
    Polycrystalline MgB2-xCx samples with x=0.05, 0.1, 0.2, 0.3, 0.4 nano-particle carbon powder were prepared using an in-situ reaction method under well controlled conditions to limit the extent of C substitution. The phases, lattice parameters, microstructures, superconductivity and flux pinning were characterized by XRD, TEM, and magnetic measurements. It was found that both the a-axis lattice parameter and the Tc decreased monotonically with increasing doping level. For the sample doped with the highest nominal composition of x=0.4 the Tc dropped only 2.7K. The nano-C-doped samples showed an improved field dependence of the Jc compared with the undoped sample over a wide temperature range. The enhancement by C-doping is similar to that of Si-doping but not as strong as for nano-SiC doped MgB2. X-ray diffraction results indicate that C reacted with Mg to form nano-size Mg2C3 and MgB2C2 particles. Nano-particle inclusions and substitution, both observed by transmission electron microscopy, are proposed to be responsible for the enhancement of flux pinning in high fields.Comment: 9 pages, 12 figure

    JAZ8 Interacts with VirE3 attenuating agrobacterium mediated root tumorigenesis

    Get PDF
    Agrobacterium tumefaciens can cause crown gall tumors by transferring both an oncogenic piece of DNA (T-DNA) and several effector proteins into a wide range of host plants. For the translocated effector VirE3 multiple functions have been reported. It acts as a transcription factor in the nucleus binding to the Arabidopsis thaliana pBrp TFIIB-like protein to activate the expression of VBF, an F-box protein involved in degradation of the VirE2 and VIP1 proteins, facilitating Agrobacterium-mediated transformation. Also VirE3 has been found at the plasma membrane, where it could interact with VirE2. Here, we identified AtJAZ8 in a yeast two-hybrid screening with VirE3 as a bait and confirmed the interaction by pull-down and bimolecular fluorescence complementation assays. We also found that the deletion of virE3 reduced Agrobacterium virulence in a root tumor assay. Overexpression of virE3 in Arabidopsis enhanced tumorigenesis, whereas overexpression of AtJAZ8 in Arabidopsis significantly decreased the numbers of tumors formed. Further experiments demonstrated that AtJAZ8 inhibited the activity of VirE3 as a plant transcriptional regulator, and overexpression of AtJAZ8 in Arabidopsis activated AtPR1 gene expression while it repressed the expression of AtPDF1.2. Conversely, overexpression of virE3 in Arabidopsis suppressed the expression of AtPR1 whereas activated the expression of AtPDF1.2. Our results proposed a novel mechanism of counter defense signaling pathways used by Agrobacterium, suggesting that VirE3 and JAZ8 may antagonistically modulate the salicylic acid/jasmonic acid (SA/JA)-mediated plant defense signaling response during Agrobacterium infection.Plant science

    Magnetic reversal processes and critical thickness in FePt/{\alpha}-Fe/FePt trilayers

    Full text link
    Magnetic reversal processes of a FePt/{\alpha}-Fe/FePt trilayer system with in-plane easy axes have been investigated within a micromagnetic approach. It is found that the magnetic reversal process consists of three steps: nucleation of a prototype of domain wall in the soft phase, the evolution as well as the motion of the domain wall from the soft to the hard phase and finally, the magnetic reversal of the hard phase. For small soft layer thickness Ls, the three steps are reduced to one single step, where the magnetizations in the two phases reverse simultaneously and the hysteresis loops are square with nucleation as the coercivity mechanism. As Ls increases, both nucleation and pinning fields decrease. In the meantime, the single-step reversal expands to a standard three-step one and the coercivity mechanism changes from nucleation to pinning. The critical thickness where the coercivity mechanism alters, could be derived analytically, which is found to be inversely proportional to the square root of the crystalline anisotropy of the hard phase. Further increase of Ls leads to the change of the coercivity mechanism from pinning to nucleation.Comment: 21 pages, 5 figures, pdf file, figures include

    Lepton flavor violation decays τ−→Ό−P1P2\tau^-\to \mu^- P_1 P_2 in the topcolor-assisted technicolor model and the littlest Higgs model with TT parity

    Full text link
    The new particles predicted by the topcolor-assisted technicolor (TC2TC2) model and the littlest Higgs model with T-parity (called LHTLHT model) can induce the lepton flavor violation (LFVLFV) couplings at tree level or one loop level, which might generate large contributions to some LFVLFV processes. Taking into account the constraints of the experimental data on the relevant free parameters, we calculate the branching ratios of the LFVLFV decay processes τ−→Ό−P1P2\tau^-\to\mu^- P_1 P_2 with P1P2P_1 P_2 = π+π−\pi^+\pi^-, K+K−K^+K^- and K0K0ˉK^0\bar{K^0} in the context of these two kinds of new physics models. We find that the TC2TC2 model and the LHTLHT model can indeed produce significant contributions to some of these LFVLFV decay processes.Comment: 24 pages, 7 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
    • 

    corecore