30 research outputs found

    Effect of neutrase, alcalase, and papain hydrolysis of whey protein concentrates on iron uptake by Caco-2 cells

    No full text
    Effects of enzymatic hydrolysates of whey protein concentrates (WPC) on iron absorption were studied using in vitro digestion combined with Caco-2 cell models for improved iron absorption. Neutrase- and papain-treated WPC could improve iron absorption; especially hydrolysates by Neutrase could significantly increase iron absorption to 12.8% compared to 3.8% in the control. Hydrolysates by alcalase had negative effects to the lowest at 0.57%. Two new bands at molecular weights (MW) around and below 10 kDa occurred at tricine-SDS-PAGE of hydrolysates by Neutrase, and one new band at MW below 10 kDa occurred in hydrolysates by papain. No new band was observed in hydrolysates by alcalase. Concentration of free amino acids indicated that, except for tyrosine and phenylalanine, amino acids in papain-treated hydrolysates were higher than that of alcalase, and no cysteine and proline were found in hydrolysates by alcalase. The results suggested that hydrolysate by Neutrase-treated WPC is a promising facilitator for iron absorption. Peptides of MW around and lower than 10 kDa and aspartic acid, serine, glutamic acid, glycin, cysteine, histidine, and proline may be contributors to enhancemen

    Measurements of All-Particle Energy Spectrum and Mean Logarithmic Mass of Cosmic Rays from 0.3 to 30 PeV with LHAASO-KM2A

    No full text
    International audienceWe present the measurements of all-particle energy spectrum and mean logarithmic mass of cosmic rays in the energy range of 0.3–30 PeV using data collected from LHAASO-KM2A between September 2021 and December 2022, which is based on a nearly composition-independent energy reconstruction method, achieving unprecedented accuracy. Our analysis reveals the position of the knee at 3.67±0.05±0.15  PeV. Below the knee, the spectral index is found to be -2.7413±0.0004±0.0050, while above the knee, it is -3.128±0.005±0.027, with the sharpness of the transition measured with a statistical error of 2%. The mean logarithmic mass of cosmic rays is almost heavier than helium in the whole measured energy range. It decreases from 1.7 at 0.3 PeV to 1.3 at 3 PeV, representing a 24% decline following a power law with an index of -0.1200±0.0003±0.0341. This is equivalent to an increase in abundance of light components. Above the knee, the mean logarithmic mass exhibits a power law trend towards heavier components, which is reversal to the behavior observed in the all-particle energy spectrum. Additionally, the knee position and the change in power-law index are approximately the same. These findings suggest that the knee observed in the all-particle spectrum corresponds to the knee of the light component, rather than the medium-heavy components

    Pointing calibration of LHAASO-WFCTA telescopes using bright stars

    No full text
    International audienceOne of the main scientific objectives of the Large High Altitude Air Shower Observatory (LHAASO) is to perform accurate measurements of the energy spectra for different cosmic ray masses, from a few TeV to 100 PeV. As one of the main sub-arrays of LHAASO, the Wide Field-of-View Cherenkov Telescope Array (WFCTA), which consists of 18 telescopes, can help in achieving this goal. The pointing accuracy of each telescope is crucial for reconstructing energy and determining mass-sensitive parameters. In this study, a method for absolute pointing calibration using ultraviolet bright stars was established. The proposed method can achieve a pointing accuracy of approximately 0.02° by using more than five stars. When more stars are used in the telescope’s field of view, the accuracy of the pointing calibration can be improved, e.g, a pointing accuracy of 0.01° can be achieved when using more than 15 stars. A high-precision inclinometer with a monitor resolution of 0.003° was installed on the camera to monitor the zenith direction of the telescope at every second. After calibration using bright stars, the absolute pointing accuracy of the inclinometer was 0.02°. •Method for absolute pointing calibration using ultraviolet bright stars established.•A pointing accuracy of ∼0.02°can be achieved using more than five stars.•A pointing accuracy of 0.01°can be achieved when using more than 15 stars•Accuracy of the pointing calibration increases with number of bright stars
    corecore