92,819 research outputs found
Transverse Momentum Dependent Factorization for Quarkonium Production at Low Transverse Momentum
Quarkonium production in hadron collisions at low transverse momentum
with as the quarkonium mass can be used for probing
transverse momentum dependent (TMD) gluon distributions. For this purpose, one
needs to establish the TMD factorization for the process. We examine the
factorization at the one-loop level for the production of or .
The perturbative coefficient in the factorization is determined at one-loop
accuracy. Comparing the factorization derived at tree level and that beyond the
tree level, a soft factor is, in general, needed to completely cancel soft
divergences. We have also discussed possible complications of TMD factorization
of p-wave quarkonium production.Comment: Title changed in the journal, published versio
Breakdown of QCD Factorization for P-Wave Quarkonium Production at Low Transverse Momentum
Quarkonium production at low transverse momentum in hadron collisions can be
used to extract Transverse-Momentum-Dependent(TMD) gluon distribution
functions, if TMD factorization holds there. We show that TMD factorization for
the case of P-wave quarkonium with holds at one-loop
level, but is violated beyond one-loop level. TMD factorization for other
P-wave quarkonium is also violated already at one-loop.Comment: Published version in Physics Letters B (2014), pp. 103-10
A study of the problems associated with Dalangdian reservoir, China
There are over 2,300 lakes over 1 km2 in China (total area 80 000 km2). In addition there are approximately 87 000 reservoirs with a storage capacity of 413 billion m3. These form the main supply of drinking water as well as water for industrial and agricultural production and aquaculture. Because of a lack of understanding of the frailty of lake ecosystems and poor environmental awareness, human activities have greatly affected freshwater systems. This article focuses on the problems of one water supply reservoir, Dalangdian Reservoir, and considers options for improving its management. Dalangdian Reservoir is described and occurrence of algal genera given. The authors conclude with remarks on the future of the Dalangdian Reservoir
Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of Nuclear factor (erythroid-derived 2)-like 2
Perinatal hypoxic ischaemic encephalopathy (HIE) has a high mortality rate with neuropsychological impairment. This study investigated the neuroprotective effects of argon against neonatal hypoxic-ischaemic brain injury. In vitro cortical neuronal cell cultures derived from rat foetuses were subjected to an oxygen and glucose deprivation (OGD) challenge for 90 minutes and then exposed to 70% argon or nitrogen with 5% carbon dioxide and balanced with oxygen for 2 hours. In vivo, seven-day-old rats were subjected to unilateral common carotid artery ligation followed by hypoxic (8% oxygen balanced with nitrogen) insult for 90 minutes. They were exposed to 70% argon or nitrogen balanced with oxygen for 2 hours. In vitro, argon treatment of cortical neuronal cultures resulted in a significant increase of p-mTOR and Nuclear factor (erythroid-derived 2)-like 2(Nrf2) and protection against OGD challenge. Inhibition of m-TOR through Rapamycin or Nrf2 through siRNA abolished argon-mediated cyto-protection. In vivo, argon exposure significantly enhanced Nrf2 and its down-stream effector NAD(P)H Dehydrogenase, Quinone 1(NQO1) and superoxide dismutase 1(SOD1). Oxidative stress, neuroinflammation and neuronal cell death were significantly decreased and brain infarction was markedly reduced. Blocking PI-3K through wortmannin or ERK1/2 through U0126 attenuated argon-mediated neuroprotection. These data provide a new molecular mechanism for the potential application of Argon as a neuroprotectant in HIE
- …