144,787 research outputs found
Bounded H∞ synchronization and state estimation for discrete time-varying stochastic complex for discrete time-varying stochastic complex networks over a finite horizon
Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, new synchronization and state estimation problems are considered for an array of coupled discrete time-varying stochastic complex networks over a finite horizon. A novel concept of bounded H∞ synchronization is proposed to handle the time-varying nature of the complex networks. Such a concept captures the transient behavior of the time-varying complex network over a finite horizon, where the degree of
bounded synchronization is quantified in terms of the H∞-norm. A general sector-like nonlinear function is employed to describe
the nonlinearities existing in the network. By utilizing a timevarying real-valued function and the Kronecker product, criteria
are established that ensure the bounded H∞ synchronization in terms of a set of recursive linear matrix inequalities (RLMIs),
where the RLMIs can be computed recursively by employing available MATLAB toolboxes. The bounded H∞ state estimation problem is then studied for the same complex network, where
the purpose is to design a state estimator to estimate the network states through available output measurements such that, over a finite horizon, the dynamics of the estimation error is guaranteed to be bounded with a given disturbance attenuation level. Again, an RLMI approach is developed for the state estimation problem. Finally, two simulation examples are exploited to show the
effectiveness of the results derived in this paper.This work was supported in part by the Engineering and Physical Sciences Research Council of U.K. under Grant GR/S27658/01, the National Natural Science Foundation of China under Grant 61028008 and Grant 60974030, the National 973 Program of China under Grant 2009CB320600, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany
Sampled-data synchronization control of dynamical networks with stochastic sampling
Copyright @ 2012 IEEEThis technical note is concerned with the sampled-data synchronization control problem for a class of dynamical networks. The sampling period considered here is assumed to be time-varying that switches between two different values in a random way with given probability. The addressed synchronization control problem is first formulated as an exponentially mean-square stabilization problem for a new class of dynamical networks that involve both the multiple probabilistic interval delays (MPIDs) and the sector-bounded nonlinearities (SBNs). Then, a novel Lyapunov functional is constructed to obtain sufficient conditions under which the dynamical network is exponentially mean-square stable. Both Gronwall's inequality and Jenson integral inequality are utilized to substantially simplify the derivation of the main results. Subsequently, a set of sampled-data synchronization controllers is designed in terms of the solution to certain matrix inequalities that can be solved effectively by using available software. Finally, a numerical simulation example is employed to show the effectiveness of the proposed sampled-data synchronization control scheme.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61028008, 60974030, 61134009 and 61104125, the National 973 Program of China under Grant 2009CB320600, and the Alexander von Humboldt Foundation
of Germany
Cellular neural networks, Navier-Stokes equation and microarray image reconstruction
Copyright @ 2011 IEEE.Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier–Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time
tt*-geometry on the big phase space
The big phase space, the geometric setting for the study of quantum cohomology with gravitational descendents, is a complex manifold and consists of an infinite number of copies of the small phase space. The aim of this paper is to define a Hermitian geometry on the big phase space.
Using the approach of Dijkgraaf and Witten, we lift various geometric structures of the small phase space to the big phase space. The main results of our paper state that various notions from tt*-geometry are preserved under such liftings
Empirical pricing kernels obtained from the UK index options market
Empirical pricing kernels for the UK equity market are derived as the ratio between risk-neutral densities, inferred from FTSE 100 index options, and historical real-world densities, estimated from time series of the index. The kernels thus obtained are almost compatible with a risk averse representative agent, unlike similar estimates for the US market
Gradient design of metal hollow sphere (MHS) foams with density gradients
This is the post-print version of the final paper published in Composites Part B: Engineering. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Metal hollow sphere (MHS) structures with a density gradient have attracted increasing attention in the effort to pursue improved energy absorption properties. In this paper, dynamic crushing of MHS structures of different gradients are discussed, with the gradients being received by stacks of hollow spheres of the same external diameter but different wall thicknesses in the crushing direction. Based on the dynamic performance of MHS structures with uniform density, a crude semi-empirical model is developed for the design of MHS structures in terms of gradient selections for energy absorption and protection against impact. Following this, dynamic responses of density graded MHS foams are comparatively analyzed using explicit finite element simulation and the proposed formula. Results show that the simple semi-empirical model can predict the response of density gradient MHS foams and is ready-to-use in the gradient design of MHS structures.The National Science Foundation of China and the State Key Laboratory of Explosion Science
and Technology (Beijing Institute of Technology
- …