25,233 research outputs found

    On the momentum-dependence of KK^{-}-nuclear potentials

    Get PDF
    The momentum dependent KK^{-}-nucleus optical potentials are obtained based on the relativistic mean-field theory. By considering the quarks coordinates of KK^- meson, we introduced a momentum-dependent "form factor" to modify the coupling vertexes. The parameters in the form factors are determined by fitting the experimental KK^{-}-nucleus scattering data. It is found that the real part of the optical potentials decrease with increasing KK^- momenta, however the imaginary potentials increase at first with increasing momenta up to Pk=450550P_k=450\sim 550 MeV and then decrease. By comparing the calculated KK^- mean free paths with those from KnK^-n/KpK^-p scattering data, we suggested that the real potential depth is V080V_0\sim 80 MeV, and the imaginary potential parameter is W065W_0\sim 65 MeV.Comment: 9 pages, 4 figure

    The Carriers of the Interstellar Unidentified Infrared Emission Features: Constraints from the Interstellar C-H Stretching Features at 3.2-3.5 Micrometers

    Get PDF
    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometer, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have been recently ascribed to mixed aromatic/aliphatic organic nanoparticles. More recently, an upper limit of <9% on the aliphatic fraction (i.e., the fraction of carbon atoms in aliphatic form) of the UIE carriers based on the observed intensities of the 3.4 and 3.3 micrometer emission features by attributing them to aliphatic and aromatic C-H stretching modes, respectively, and assuming A_34./A_3.3~0.68 derived from a small set of aliphatic and aromatic compounds, where A_3.4 and A_3.3 are respectively the band strengths of the 3.4 micrometer aliphatic and 3.3 micrometer aromatic C-H bonds. To improve the estimate of the aliphatic fraction of the UIE carriers, here we analyze 35 UIE sources which exhibit both the 3.3 and 3.4 micrometer C-H features and determine I_3.4/I_3.3, the ratio of the power emitted from the 3.4 micrometer feature to that from the 3.3 micrometer feature. We derive the median ratio to be ~ 0.12. We employ density functional theory and second-order perturbation theory to compute A_3.4/A_3.3 for a range of methyl-substituted PAHs. The resulting A_3.4/A_3.3 ratio well exceeds 1.4, with an average ratio of ~1.76. By attributing the 3.4 micrometer feature exclusively to aliphatic C-H stretch (i.e., neglecting anharmonicity and superhydrogenation), we derive the fraction of C atoms in aliphatic form to be ~2%. We therefore conclude that the UIE emitters are predominantly aromatic.Comment: 14 pages, 5 figures, 1 table; accepted for publication in The Astrophysical Journa

    Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping

    Get PDF
    [[abstract]]The effect of pretreatment bias on the nucleation and growth mechanisms of the ultrananocrystalline diamond (UNCD) films on the Si substrate via bias-enhanced nucleation and bias-enhanced growth (BEN-BEG) was investigated using cross-sectional high-resolution transmission electron microscopy, chemical bonding mapping, and Raman spectroscopy. The mirror-polished substrate surface showed the formation of a triangular profile produced by a dominant physical sputtering mechanism induced by ion bombardment of ions from the hydrogen plasma accelerated toward the substrate due to biasing and a potential hydrogen-induced chemical reaction component before synthesizing the UNCD films. The BEN-BEG UNCD films grown on the Si substrate with biased and unbiased pretreatments in the hydrogen plasma were compared. In the case of the bias-pretreated substrate, the SiC phases were formed at the peaks of the Si surface triangular profile due to the active unsaturated Si bond and the enhanced local electrical field. The UNCD grains grew preferentially at the peaks of the triangular substrate surface profile and rapidly covered the amorphous carbon (a-C) and oriented graphite phases formed in the valley of the surface profile. In the case of the substrate with unbiased pretreatment, the SiC phases were formed via the reactions between the hydrocarbon species and the active Si atoms released from the substrate with assistance of the hydrogen plasma. The UNCD grains nucleated on the nucleating sites consisting of the SiC, a-C, and graphite phases. Growth mechanisms for the BEN-BEG UNCD films on both Si substrates were proposed to elucidate the different nucleation processes. Applying bias on the Si substrate pretreated in the hydrogen plasma optimized the nucleation sites for growth of UNCD grains, resulting in the low content of the nondiamond phases in UNCD films.[[notice]]補正完畢[[booktype]]紙本[[booktype]]電子版[[countrycodes]]US

    The properties of kaonic nuclei in relativistic mean-field theory

    Full text link
    The static properties of some possible light and moderate kaonic nuclei, from C to Ti, are studied in the relativistic mean-field theory. The 1s and 1p state binding energies of KK^- are in the range of 739673\sim 96 MeV and 226322\sim 63 MeV, respectively. The binding energies of 1p states increase monotonically with the nucleon number A. The upper limit of the widths are about 42±1442\pm 14 MeV for the 1s states, and about 71±1071\pm 10 MeV for the 1p states. The lower limit of the widths are about 12±412\pm 4 MeV for the 1s states, and 21±321\pm 3 MeV for the 1p states. If V030V_{0}\leq 30 MeV, the discrete KK^- bound states should be identified in experiment. The shrinkage effect is found in the possible kaonic nuclei. The interior nuclear density increases obviously, the densest center density is about 2.1ρ02.1\rho_{0}.Comment: 9 pages, 2 tables and 1 figure, widths are considered, changes a lo

    A hybrid algorithm for predicting median-plane head-related transfer functions from anthropometric measurements

    Full text link
    Since head-related transfer functions (HRTFs) represent the interactions between sounds and physiological structures of listeners, anthropometric parameters represent a straightforward way to customize (or predict) individualized HRTFs. This paper proposes a hybrid algorithm for predicting median-plane individualized HRTFs using anthropometric parameters. The proposed hybrid algorithm consists of three parts: decomposition of HRTFs; selection of key anthropometric parameters; and establishing a prediction formula. Firstly, an independent component analysis (ICA) is applied to median-plane HRTFs from multiple subjects to obtain independent components and subject-dependent weight coefficients. Then, a factor analysis is used to select key anthropometric parameters relevant to HRTFs. Finally, a regression formula that connects ICA weight coefficients to key anthropometric parameters is established by a multiple linear regression. Further, the effectiveness of the proposed hybrid algorithm is verified by an objective evaluation via spectral distortion and a subjective localization experiment. The results show that, when compared with generic Knowles Electronics Manikin for Acoustic Research (KEMAR) HRTFs, the spectral characteristics of the predicted HRTFs are closer to those of the individualized HRTFs. Moreover, the predicted HRTFs can alleviate front-back and up-down confusion and improve the accuracy of localization for most subjects
    corecore