20,548 research outputs found
Do ESOPs enhance firm performance? Evidence from China's reform experiment
China introduced employee stock ownership plans (ESOPs) in 1992 purely as an employee incentive scheme. The government initiated the policy experiment on ESOPs as part of China's reform of its state-owned enterprises, and it was abruptly terminated 2. years after initiation. This policy experiment resulted in an exogenous sample of ESOPs that allows us to provide the first evidence from Chinese firms on the performance-ESOP relation. After examining a variety of performance measures, including ROA, ROE, Tobin's q, and productivity, we find little difference in performance between ESOP firms and non-ESOP firms. © 2010 Elsevier B.V.postprin
Cosmological Effects of Nonlinear Electrodynamics
It will be shown that a given realization of nonlinear electrodynamics, used
as source of Einstein's equations, generates a cosmological model with
interesting features, namely a phase of current cosmic acceleration, and the
absence of an initial singularity, thus pointing to a way to solve two
important problems in cosmology
A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity
In this article, a deep artificial neural network (ANN) model has been proposed to predict the boiling heat transfer in helical coils under high gravity conditions, which is compared with experimental data. A test rig is set up to provide high gravity up to 11 g with a heat flux up to 15100 W/m 2 and the mass velocity range from 40 to 2000 kg m −2 s −1. In the current work, a total 531 data samples have been used in the ANN model. The proposed model was developed in a Python Keras environment with Feed-forward Back-propagation (FFBP) Multi-layer Perceptron (MLP) using eight features (mass flow rate, thermal power, inlet temperature, inlet pressure, direction, acceleration, tube inner surface area, helical coil diameter) as the inputs and two features (wall temperature, heat transfer coefficient) as the outputs. The deep ANN model composed of three hidden layers with a total number of 1098 neurons and 300,266 trainable parameters has been found as optimal according to statistical error analysis. Performance evaluation is conducted based on six verification statistic metrics (R 2, MSE, MAE, MAPE, RMSE and cosine proximity) between the experimental data and predicted values. The results demonstrate that a 8-512-512-64-2 neural network has the best performance in predicting the helical coil characteristics with (R 2=0.853, MSE=0.018, MAE=0.074, MAPE=1.110, RMSE=0.136, cosine proximity=1.000) in the testing stage. It is indicated that with the utilisation of deep learning, the proposed model is able to successfully predict the heat transfer performance in helical coils, and especially achieved excellent performance in predicting outputs that have a very large range of value differences
Phase Commutation Optimized Control for Linear-Rotary Switched Reluctance Motor
IEEEThe traditional DTC method directly controls the torque and flux linkage without model calculation, which is beneficial to restraining torque ripples. However, the LRSRM not only provides the torque required for rotary motion, but also provides the axial force required for linear motion. Hence, the winding usually works in two-phase excitation mode. Given the different torque output capabilities of the front and rear phases under different rotor position angles, the conduction angles of the adjacent two phases can be further optimized. In this paper, a phase commutation optimized method is proposed to improve the torque generation between two neighboring phases and reduce torque ripple. Firstly, the hysteresis-loop control of the flux linkage is removed, which can reduce the calculation burden of digital controller. Secondly, the sector division and voltage vector selection without flux hysteresis control are redesigned. Experimental results verify the effectiveness of the proposed method. The phase current in negative torque region is reduced, and the torque ripple is suppressed as well
Non-degenerate colorings in the Brook's Theorem
Let and be two integers. We will call a proper coloring
of the graph a \textit{-nondegenerate}, if for any vertex of
with degree at least there are at least vertices of different colors
adjacent to it. In our work we prove the following result, which generalizes
Brook's Theorem. Let and be a graph without cliques on
vertices and the degree of any vertex in this graph is not greater than .
Then for every integer there is a proper -nondegenerate vertex
-coloring of , where During the primary proof,
some interesting corollaries are derived.Comment: 18 pages, 10 figure
Matter loops corrected modified gravity in Palatini formulation
Recently, corrections to the standard Einstein-Hilbert action are proposed to
explain the current cosmic acceleration in stead of introducing dark energy. In
the Palatini formulation of those modified gravity models, there is an
important observation due to Arkani-Hamed: matter loops will give rise to a
correction to the modified gravity action proportional to the Ricci scalar of
the metric. In the presence of such term, we show that the current forms of
modified gravity models in Palatini formulation, specifically, the 1/R gravity
and gravity, will have phantoms. Then we study the possible
instabilities due to the presence of phantom fields. We show that the strong
instability in the metric formulation of 1/R gravity indicated by Dolgov and
Kawasaki will not appear and the decay timescales for the phantom fields may be
long enough for the theories to make sense as effective field theory . On the
other hand, if we change the sign of the modification terms to eliminate the
phantoms, some other inconsistencies will arise for the various versions of the
modified gravity models. Finally, we comment on the universal property of the
Palatini formulation of the matter loops corrected modified gravity models and
its implications.Comment: 11 pages, 1 figures, References adde
Direct Instantaneous Torque and Axial Force Control Method for Linear-Rotary Switched Reluctance Motor with Two Radial Windings
IEEEDual-winding linear-rotary switched reluctance motors (LRSRMs) suffer from large torque ripple and severe coupling between the torque winding and the axial-force winding. To address these issues, this paper proposes a direct instantaneous torque and direct axial force control (DITC&DAFC) method to suppress torque ripple and reduce the impact of the coupling between two sets of windings. The DITC&DAFC method divides inductance-rising zone and inductance-falling zone according to the inductance characteristics, and uses hysteresis control to directly control the motor\u27s instantaneous torque in different intervals. Therefore, the generation of negative torque is reduced, which effectively suppresses torque ripples. Meanwhile, the method obviates the calculation of current and flux linkage, thereby alleviating the demands on the controller. In addition, the mechanical structure and operating mechanism of 6/4 pole LRSRM with two radial windings are described in detail. The feasibility of the proposed control method is verified through simulation and experimental results
Primordial Black Hole Formation from Inflaton
Measurements of the distances to SNe Ia have produced strong evidence that
the Universe is really accelarating, implying the existence of a nearly uniform
component of dark energy with the simplest explanation as a cosmological
constant. In this paper a small changing cosmological term is proposed, which
is a function of a slow-rolling scalar field, by which the de Sitter primordial
black holes' properties, for both charged and uncharged cases, are carefully
examined and the relationship between the black hole formation and the energy
transfer of the inflaton within this cosmological term is eluciatedComment: 6 pages, Late
Comprehensive Characterization of the Transmitted/Founder env Genes From a Single MSM Cohort in China
Background: The men having sex with men (MSM) population has become one of the major risk groups for HIV-1 infection in China. However, the epidemiological patterns, function of the env genes, and autologous and heterologous neutralization activity in the same MSM population have not been systematically characterized. Methods: The env gene sequences were obtained by the single genome amplification. The time to the most recent common ancestor was estimated for each genotype using the Bayesian Markov Chain Monte Carlo approach. Coreceptor usage was determined in NP-2 cells. Neutralization was analyzed using Env pseudoviruses in TZM-bl cells. Results: We have obtained 547 full-length env gene sequences by single genome amplification from 30 acute/early HIV-1–infected individuals in the Beijing MSM cohort. Three genotypes (subtype B, CRF01_AE, and CRF07_BC) were identified and 20% of the individuals were infected with multiple transmitted/founder (T/F) viruses. The tight clusters of the MSM sequences regardless of geographic origins indicated nearly exclusive transmission within the MSM population and limited number of introductions. The time to the most recent common ancestor for each genotype was 10–15 years after each was first introduced in China. Disparate preferences for coreceptor usages among 3 genotypes might lead to the changes in percentage of different genotypes in the MSM population over time. The genotype-matched and genotype-mismatched neutralization activity varied among the 3 genotypes. Conclusions: The identification of unique characteristics for transmission, coreceptor usage, neutralization profile, and epidemic patterns of HIV-1 is critical for the better understanding of transmission mechanisms, development of preventive strategies, and evaluation of vaccine efficacy in the MSM population in China
- …