11,385 research outputs found

    Uncoordinated cooperative forwarding in vehicular networks with random transmission range

    Full text link
    © 2015 IEEE. This paper investigates cooperative forwarding in large highly dynamic vehicular networks. Unlike traditional coordinated cooperative forwarding schemes that require a large amount of coordination information to be exchanged before making the forwarding decision, this paper proposes an uncoordinated cooperative forwarding scheme where each node, a random transmission range, decides whether or not to forward a received packet independently based on a forwarding probability determined by its own location. Analytical results are derived on the successful end-to-end transmission probability and the expected number of forwarding nodes involved in the cooperative forwarding process. The multi-hop correlations and multi-path correlations, which constitute major challenges in the analysis, are carefully considered in our analysis. Simulations are conducted to establish the performance of the proposed scheme assuming different forwarding probability functions. In addition to developing an uncoordinated cooperative forwarding scheme, which is particularly suited for the highly dynamic vehicular networks, this paper also makes important theoretical contributions on analyzing the connectivity of networks with nodes of variable and random transmission ranges

    Interference-constrained adaptive simultaneous spectrum sensing and data transmission scheme for unslotted cognitive radio network

    Full text link
    Cognitive radio (CR) is widely recognized as a novel approach to improve the spectrum efficiency. However, there exists one problem needed to be resolved urgently, that is the two conflicting goals in CR network: one is to minimize the interference to primary (licensed) system; the other is to maximize the throughput of secondary (unlicensed) system. Meanwhile, the secondary user (SU) has to monitor the spectrum continuously to avoid the interference to primary user (PU), thus the throughput of the secondary system is affected by how often and how long the spectrum sensing is performed. Aiming to balance the two conflicting goals, this article proposes a novel Interference-Constrained Adaptive Simultaneous spectrum Sensing and data Transmission (ICASST) scheme for unslotted CR network, where SUs are not synchronized with PUs. In the ICASST scheme, taking advantage of the statistic information of PU's activities, the data transmission time is adaptively adjusted to avoid the interference peculiar to unslotted CR network; the operation of spectrum sensing is moved to SU receiver from SU transmitter to increase the data transmission time and hence improve the throughput of SU. Simulation results validate the efficiency of ICASST scheme, which significantly increases the throughput of secondary system and decreases the interference to PU simultaneously. © 2012 Yang et al

    A near-field error sensing strategy for compact multi-channel active sound radiation control in free field

    Full text link
    © 2019 Acoustical Society of America. Noise reduction performance of a compact active sound radiation control system is significantly affected by locations of the error microphones which are required to be installed near the primary source. In this paper, near-field error sensing for multi-channel active radiation control systems in free field is investigated, and it is found that the optimal locations of error sensors for minimizing the sum of squared sound pressure are between the primary source and the secondary sources distributed uniformly on a sphere surface surrounding the primary source. Both simulation and experiment results show that the optimal locations of error microphones are independent of the type of primary source when there are sufficient secondary sources. These optimal locations remain unchanged at low frequencies and move toward secondary sources when the secondary source number increases. Therefore, for active radiation control applications in low frequency range, a compact multi-channel system can be developed by locating error microphones between the primary source and secondary sources

    Anti-noise-folding regularized subspace pursuit recovery algorithm for noisy sparse signals

    Full text link
    © 2014 IEEE. Denoising recovery algorithms are very important for the development of compressed sensing (CS) theory and its applications. Considering the noise present in both the original sparse signal x and the compressive measurements y, we propose a novel denoising recovery algorithm, named Regularized Subspace Pursuit (RSP). Firstly, by introducing a data pre-processing operation, the proposed algorithm alleviates the noise-folding effect caused by the noise added to x. Then, the indices of the nonzero elements in x are identified by regularizing the chosen columns of the measurement matrix. Afterwards, the chosen indices are updated by retaining only the largest entries in the Minimum Mean Square Error (MMSE) estimated signal. Simulation results show that, compared with the traditional orthogonal matching pursuit (OMP) algorithm, the proposed RSP algorithm increases the successful recovery rate (and reduces the reconstruction error) by up to 50% and 86% (35% and 65%) in high noise level scenarios and inadequate measurements scenarios, respectively

    The Importance of Charge Redistribution during Electrochemical Reactions: A Density Functional Theory Study of Silver Orthophosphate (Ag3PO4)

    Get PDF
    The structural sensitivity of silver orthophosphate (Ag 3 PO 4 ) for photo-electrochemical water oxidation on (100), (110) and (111) surfaces has recently been reported by experimental studies (D. J. Martin et al., Energy Environ. Sci., 2013, 6, 3380-3386). The (111) surface showed the highest performance with an oxygen evolution rate of 10 times higher than the other surfaces. The high performance of the (111) surface was attributed to high hole mobility, high surface energy and, in a recent theoretical study (Z. Ma et al., RSC Adv., 2017, 7, 23994-24003), to a lower OH adsorption energy and the band structure. The investigations are based on a few structures and a full atomistic picture of the Ag 3 PO 4 under electrochemical reactions is still missing. Therefore, we report here a systematic study of the oxygen evolution reaction (OER) of Ag 3 PO 4 (100), (110), and (111) surfaces by density functional theory (DFT) calculations. Through a detailed investigation of the reaction energies and the overpotentials of OER on all possible surface orientations with all possible terminations and different involvement of Ag adsorption sites, we can confirm that (111) surfaces are highly active. However, surface orientation was not found to exclusively determine the electrochemical activity; neither did the number of Ag atoms involved in the adsorption of the intermediate species nor the type of surface termination or the different potential determining reaction steps. By using Bader charge analysis and investigation of the charge redistribution during OER, we found that the highest activity, i.e. lowest overpotential, is related to the charge redistribution of two OER steps, namely the O ad and the HOO ad formation. If the charge redistribution between these steps is small, then the overpotential is small and, hence, the activity is high. Charge redistributions are usually small for the (111) surface and therefore the (111) surface is usually the most active one. The concept of charge redistribution being decisive for the high activity of Ag 3 PO 4 may open a new design strategy for materials with highly efficient electrochemical surfaces.</p

    Error microphone location study for an eight-channel ANC system in free space

    Full text link
    © 25th International Congress on Sound and Vibration 2018, ICSV 2018: Hiroshima Calling. All rights reserved. The location of error microphones is one key factor that determines the performance of a multichannel active noise control (ANC) system in terms of global sound power reduction when the number and the location of secondary sources are fixed. In a single channel ANC system, the optimal error microphone location is on a line that is nearly perpendicular to the secondary and primary source axis and closer to the secondary source. This paper investigates the optimal location of the error microphones in an 8-channel ANC system in free space. It is demonstrated that good noise reduction performance can be achieved by placing the error microphones between the primary source and secondary sources and closer to the secondary sources in the low frequency range. Experiments conducted on a gearbox for low frequency noise control show that the averaged sound level reduction at the observation locations 2 meters away is 5.2 dB when the error microphones are placed at 0.2 m inside the secondary source surface
    • …
    corecore