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Abstract: The structural sensitivity of silver orthophosphate (Ag3PO4) for photo-

electrochemical water oxidation on (100), (110) and (111) surfaces has recently been reported 

by experimental studies (Martin et al. 2013). The (111) surface showed the highest performance 

with an oxygen evolution rate of 10 times higher than the other surfaces. The high performance 

of the (111) surface was attributed to high hole mobility, high surface energy and, in a recent 

theoretical study (Ma et al. 2017), to a lower OH adsorption energy and the band structure. The 

investigations are based on a few structures and a full atomistic picture of the Ag3PO4 under 

electrochemical reactions is still missing. Therefore, we report here a systematic study of the 

oxygen evolution reaction (OER) of Ag3PO4 (100), (110), and (111) surfaces by density 

functional theory (DFT) calculations. Through a detailed investigation of the reaction energies 

and the overpotentials of OER on all possible surface orientations with all possible terminations 

and different involvement of Ag adsorption sites, we can confirm that (111) surfaces are highly 

active. However, surface orientation was not found to exclusively determine the 

electrochemical activity; neither did the number of Ag atoms involved in the adsorption of the 

intermediate species nor the type of surface termination or the different potential determining 

reaction steps. By using Bader charge analysis and investigation of the charge redistribution 

during OER, we found that the highest activity, i.e. lowest overpotential, is related to the charge 

redistribution of two OER steps, namely the Oad and the HOOad formation. If the charge 

redistribution between these steps is small, then the overpotential is small and, hence, the 

activity is high. Charge redistributions are usually small for the (111) surface and therefore the 

(111) surface is usually the most active one. The concept of charge redistribution being decisive 

for the high activity of Ag3PO4 may open a new design strategy for materials with highly 

efficient electrochemical surfaces. 
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Introduction  

Photoelectrochemical (PEC) solar fuel production has the potential to provide an eco-friendly 

and renewable alternative to fossil fuels in order to solve two worldwide problems: the shortage 

of usable energy and the increasing amount of greenhouse emissions [1-3]. In PEC solar fuel 

production, the solar energy directly converts water or CO2 into a fuel, such as hydrogen, 

through electrochemical reactions and electrochemically active materials.  The efficiency is 

determined by four fundamental processes: light absorption, separation of electrons and holes, 

migration of charge towards the surface, and the electrochemical reactions [4]. Regarding the 

electrochemical reactions, the oxygen evolution reaction (OER) is known as the main 

bottleneck related to a 4-electron process [5-6].  

Silver Orthophosphate (Ag3PO4) is a promising candidate for OER due to its appropriate band 

gap (2.36 eV [7]), non-toxicity, and high photocatalytic activity [8-10]. However, the poor 

photostability and difficulties in the control of crystal size and morphology limit its practical 

application [6]. The high OER activity of Ag3PO4 was initially discovered by O2 evolution and 

organic dye decomposition experiments. It was shown that the performance of Ag3PO4 is more 

than 10 times higher than that of BiVO4 and TiO2-xNx 
[7]. Recently, several groups investigated 

the application of the Ag3PO4 for water splitting and found high electrochemical activity [10-12]. 

Zheng et al. found by comparing the degradation of positively charged metheylene blue, methyl 

orange, and rhodamine B that the (111) surface of Ag3PO4 has the highest photocatalytic 

activity among (100), (110), and (111) surfaces [11].  

Martin et al. [10] demonstrated in a combined experimental and computational study 

extraordinary structural sensitivity of Ag3PO4. The activity for OER on the (111) surface was 

found to be nearly 10 times larger than that on the (100) and (110) surface, respectively. The 

extremely high activity of the (111) surface was attributed to the stability of the surface (highest 

surface formation energy for (111) surface) and its electronic properties (high mobility of holes) 
[10]. Several other ab-initio studies using DFT are also devoted to the thermal stability and the 

electronic properties of the bulk and different surfaces [7, 10, 13-15]. Using various levels of 

approximations, i.e. standard DFT [7], DFT+U [10, 13], hybrid methods [14, 15], most results pointed 

to similar conclusions as Martin et al. regardless of the degree of accuracy. Ma et al. [16] 

demonstrated the surface dependence of electronic structures of Ag3PO4 and explained the 

better performance of the (111) surface compared to the (110) and (100) surfaces by an absence 

of mid-gap states. Similar tunable band edge energies via surface engineering were previously 

reported for other water oxidation photocatalysts as well, such as NiOOH [17] and CdSe [18]. In 

addition, Ma et al. [16] found that the much lower adsorption energy of HO* on the (111) surface 

leads to the deprotonation of the first absorbed water molecule becoming a favorable step at the 

(111) surface compared to (100) and (110). However, the study is based on three structures only 

and different adsorption sites (Ag and P); the lowest overpotential was found for adsorption on 

an Ag site. A systematic atomistic analysis of the electrochemical activity has not been reported 

yet. This is, however, necessary in order to explain why the (111) surface is more active than 

other surfaces. 

In this study, we therefore explore the electrochemical activity of Ag3PO4 by evaluating the 

overpotentials and the potential determining steps of OER by DFT. Through an extensive 

investigation of the overpotentials of OER on (100), (110), and (111) surfaces with all possible 

terminations and different involvement of Ag adsorption sites, we confirm the structural 
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sensitivity of the electrochemical activities, can, however, not conclusively relate the structure 

and the electrochemical activity. Using Bader charge analysis, we demonstrate the correlation 

between charge distribution, overpotential, and potential determining steps of OER on Ag3PO4 

and reveal the reasons for different electrochemical activities of different structures. 

 

Computational details 

Many reaction mechanisms of the OER on metal oxide surfaces were proposed in the literature 

as discussed in a recent review paper by Zhang and Bieberle-Hütter [19]. Here, we consider the 

mechanism proposed by Rossmeisl et al. [20]. This mechanism has been proven to be successful 

in predicting trends in overpotentials of OER at many oxide systems [3, 21-29]. The mechanism 

consists of the following four proton-coupled electron transfer (PCET) steps and is also 

illustrated in Figure 1. It is assumed that all intermediate species adsorb on Ag sites, since metal 

sites are usually the active adsorption sites [30, 31]. 

H2O + ad → HOad+ H+ + e-    (1) 

HOad → Oad + H+ + e-    (2) 

H2O + Oad → HOOad + H+ + e-   (3) 

HOOad → ad + O2 + H+ + e-    (4) 

The free energies of above reactions under an applied potential can be calculated as [20] 

ΔG1 = E(HOad) - E(ad) - EH2O + 0.5EH2 + (ΔZPE - TΔS)1 -eU (5) 

ΔG2 = E(Oad) - E(HOad) + 0.5EH2 + (ΔZPE - TΔS)2 - eU  (6) 

ΔG3 = E(HOOad) - E(Oad) -EH2O + 0.5EH2 +(ΔZPE - TΔS)3 – eU (7) 

ΔG4 = E(ad) - E(HOOad) + EO2 + 0.5EH2 + (ΔZPE + TΔS)4 – eU (8) 

where ΔGn are the free energies of the reactions (1) to (4) and U is the electrode potential 

relative to the standard hydrogen electrode. ΔZPE and ΔS are the differences in zero point energy 

and entropy of the reactants and products in the reactions, respectively. ad denotes a surface 

site and Oad, OHad, and OOHad denote species adsorbed on the surface. According to Rossmeisl 

et al. [20], the influence of the pH on the free energy can be taken into account by adding the 

following term: ΔG (pH) = - kT x ln [H+], where k is the Boltzmann constant. Unless specified 

otherwise, we adopt in this work ΔG (pH) = 0 assuming a pH value of 0.  

In the calculations of free energy changes, we use previously reported values used for Fe2O3 for 

∆ZPE - T∆S [32] and keep them constant for different reaction sites, since they were found to vary 

little for different oxide materials (Fe2O3, TiO2, MnO:ZnO) as well as for different reaction 

sites (top and bridge sites of MnO:ZnO alloys) with a maximum differences of 0.05 eV [33].  The 

overpotential η for OER is defined as the extra potential needed to drive water splitting 

compared to the standard potential which is 1.23 V for water splitting. The overpotential is a 

measure for the electrochemical activity. It is calculated as follows [20],  

23.1
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Figure 1. Illustration of the assumed OER mechanism on Ag3PO4. The adsorption site is Ag. 

The free energies of the individual reaction steps were calculated by the DFT using VASP 

(Vienna Ab initio Simulation Package) [34,35]. Projector Augmented Wave potentials [36] were 

employed with a cut-off energy of 600 eV. Perdew-Burke-Ernzerhof functionals [37] were used 

with 6 × 6 ×6 k-point sampling for bulk and 6 × 6 × 1 k-point sampling for slabs modelling the 

surfaces with a force threshold of -0.01 eV/Å and an energy threshold of 1×10-5 eV. The 

optimized lattice parameter of the bulk structure is 6.10 Å, which is in well agreement with the 

experimental result of 6.04 Å [38].  

In addition to the energy calculations, we have carried out Bader charge (BC) analysis [39,40] in 

order to locate the electronic charge density at the interface and the changes during OER. In 

Bader charge analysis, the total charge (electron density) associated with each atom is 

determined by using the so-called Bader volume defined by the zero charge flux surfaces. The 

charge enclosed within this Bader volume is a good approximation of the total electronic charge 

of an atom. The charge distribution can also be used to determine multipole moments of 

interacting atoms or molecules. 

In our study, we first calculate the Bader charges of all atoms in the bulk Ag3PO4. The charges 

of the Ag from the bulk are then compared to the Ag of the surface; it is calculated how these 

charges change when species are adsorbed on the surface during OER. Next to the Bader 

charges of the Ag, the Bader charges of the oxygen of the adsorbed oxygen species, i.e. OHad, 

Oad, OOHad, are calculated. This is used as a measure to compare the bonding strength of 

different adsorbed species with the Ag atoms. Finally, the charge re-distribution during OER is 

determined. 

 

Results and Discussion 

Geometries  

Different geometries were modelled using slab models consisting of (1x1) cells in the x and y 

direction and more than 16 atomic layers (at least three periodic units from bulk structure) with 

a vacuum reaching 10 Å in the z direction. In total, 6 structures were identified and are 

summarized in Table 1 and in Figure 2 (unrelaxed structures). A structure is characterized by a 

surface orientation, namely (100), (110), and (111), and a surface termination. Two 

terminations were identified for the (100) orientation, three terminations for the (110) 

orientation, and one termination for the (111) orientation. Per surface termination different Ag 

reaction sites can adsorb the intermediate species OHad, Oad, and OOHad. These reaction sites 

are labelled with capital letters in Table 1 and in Figure 2.  

In total, 14 possible geometries are found for the OER on Ag3PO4. The geometries are labelled 

as “orientation-termination-index” where index is an increasing number and accounts for the 
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different geometries because of different adsorption sites. Taking 111-01-12 as an example, the 

OERs take place on the (111) surface with termination (01). Figure 3 illustrates the interactions 

of the intermediates with the Ag sites for this geometry. The intermediate OHad directly interacts 

with two Ag ions (P and Q) (Figure 3a), while the intermediates Oad and OOHad interact with 

three Ag ions (P, Q, and R) (Figure 3b and c, respectively).  

 

Table 1. Summary of all 14 possible geometries for OER on Ag3PO4. Each geometry is uniquely 

labelled as “orientation-termination-index”. Capital letters denote different Ag reaction sites. The 

intermediate species  OHad, Oad, OOHad can bond to different Ag reaction sites. 

 

 

 

Structure Orientation Termination Index HOad Oad HOOad 

1 100 01 1 A,B A,B A,B 

 100 01 2 A,C A,C A,C 

2 100 02 3 D D D 

 100 02 4 D,E D,E D,E 

3 110 01 5 I F,I F,I 

 110 01 6 G,I G,H,I G,H,I 

 110 01 7 H,I,J H,I,J H,I,J 

4 110 02 8 K,L K,L K,L 

 110 02 9 K,L K,L  L 

5 110 03 10 M,N M,N M,N 

 110 03 11 N,O N,O N,O 

6 111 01 12 P,Q P,Q,R P,Q,R 

 111 01 13 P,Q,R P,Q,R P,Q 

 111 01 14 P,R P,Q,R P,Q,R 
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Figure 2. Side views (unrelaxed) of the 6 structures including all possible terminations and Ag 

reaction sites: a) and b) (100) surface; c) – e) (110) surface; f) (111) surface. 01, 02 and 03 denote 

different types of surface termination (ascending numbering for each surface). Capital letters denote 

the type of Ag reaction site.   
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a)       b)       c)  

Figure 3. Ag adsorption sites of 111-01-12 interacting with intermediate species: a) two Ag sites 

interacting with HOad; b) three Ag sites interacting with Oad; c) three Ag sites interacting with HOOad. 

Capital letters denote the type of Ag reaction site. Colors are the same as in Figure 2.   

 

Overpotentials and their surface sensitivity  

The free energies of all intermediates of the 14 geometries are calculated according to the 

procedure given in the section Computational Methods. Taking 111-01-12 as example, Figure 

4 shows schematically the free energy diagram of the OER. The reaction energies of the four 

steps are 1.06 eV, 1.64 eV, 1.70 eV, and 0.52 eV, respectively. Without any applied potential 

(U = 0 V, blue curve), the first three steps are uphill and the last step is downhill. This indicates 

significant potential is needed to drive the overall OER. When applying the water splitting 

potential of an ideal catalyst, i.e. 1.23 V, the first three steps remain uphill with significantly 

reduced height (red curve). However, in order to produce O2, all reactions need to be downhill. 

Therefore, a potential of at least 1.70 V is required (black curve). The largest step in the OER 

is the formation of Oad (indicated by the red dotted lines). This step is potential determining and 

results in an overpotential of 0.47 V (1.70 V – 1.23 V).    

 

Figure 4. The free energy diagram of OER on 111-01-12 with applied potentials of 0 V, 1.23 V and 

1.70 V. The red dotted lines highlight the potential determining step, in this case the Oad formation. 

The reaction energies of the four reactions are 1.06 eV, 1.64 eV, 1.70 eV, and 0.52 eV, respectively. 

Using the same approach, the overpotentials and the potential determining steps of all 14 

geometries were calculated and are summarized in Table 2 and Figure 5. Overpotentials 

between 0.47 V and 1.27 V are found. The overpotential of 0.47 V is very low for OER on 

metal oxides. Note that the overpotential of RuO2 whose OER activity is one of the lowest 

overpotentials known for OER, is only 0.1 eV lower with 0.37 V [20] compared to the lowest 

overpotential in this study. 
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According to Table 2, different potential determining steps are found for the different 

geometries. The Oad formation and the HOOad formation are usually the potential determining 

step; there is only one exception, i.e. 110-01-5, were HOad formation is the potential 

determining step. The last step, i.e. O2 formation from HOOad, is never the potential determining 

step. In Ma et al. [16], the Oad formation step is the potential determining step for the three 

investigated structures. 

Figure 5 illustrates the overpotentials of the 14 geometries in form of a bar diagram. A general 

trend is seen: (111) structures have usually a lower overpotential (0.51 V ± 0.06 V) compared 

to the (100) and the (110) structures with average overpotentials of 0.82 V ± 0.34V and 0.80 V 

± 0.19 V, respectively. These overpotentials compare rather well to Ma et al. [16] who also 

found the lowest overpotential for adsorption on an Ag site. It should be mentioned here that 

the overpotentials calculated in our study all refer to adsorption on Ag sites. In Ma et al. [16], 

the overpotential for the (111) surface was, in contrast, calculated for the P site which does not 

allow direct comparison to the results shown here. In principle, P can also be an adsorption site 

and also the hydroxylation of P can impact the electrochemical reaction activities and 

mechanism. However, using the current simulation cell with hydroxylated P results in an 

unrealistic high coverage of the adsorbed hydroxyls. To fully address the effect of hydroxylated 

P, a larger simulation cell and carefully tuning of the coverage is required; this is planned for a 

forthcoming study. 

This trend of overpotential as a function of the orientation is, however, not fully unambiguous. 

For example, an overpotential of only 0.49 V was found for the geometry 100-02-4. We 

therefore studied the overpotential as a function of the number of Ag atoms involved in the 

adsorption of the intermediate species, the surface termination, and the potential determining 

reaction step (Support information Figure S1). However, these analyses did also not result in 

conclusive relations between the overpotentials and local structure / geometry and rate 

determining step. In order to elucidate this relation, we carry out Bader charge analysis in the 

following. 

Table 2. Reaction energies ΔGn, overpotentials, and potential determining step of all 14 geometries. 

The largest steps are highlighted by bold numbers. 

Geometry ΔG1 

[eV] 
ΔG2 

[eV] 
ΔG3 

[eV] 
ΔG4 

[eV] 
Overpotential 

[V] 
Potential determining step 

100-01-1 1.29 2.10 1.38 0.15 0.87 Oad formation (ΔG2) 
100-01-2 1.78 1.88 1.43 -0.17 0.65 Oad formation (ΔG2) 
100-02-3 1.71 2.50 0.61 0.09 1.27 Oad formation (ΔG2) 
100-02-4 1.66 1.72 1.45 0.09 0.49 Oad formation (ΔG2) 
110-01-5 1.82 1.00 1.59 0.51 0.59 HOad formation (ΔG1) 
110-01-6 1.58 0.96 1.84 0.54 0.61 HOOad formation (ΔG3) 
110-01-7 0.57 1.38 2.24 0.73 1.01 HOOad formation  (ΔG3) 
110-02-8 1.78 2.01 1.14 -0.01 0.78 Oad formation (ΔG2) 
110-02-9 2.03 2.26 0.64 -0.01 1.03 Oad formation (ΔG2) 
110-03-10 1.54 1.89 1.51 -0.02 0.66 Oad formation(ΔG2) 
110-03-11 0.91 2.13 1.27 0.61 0.90 Oad formation (ΔG2) 
111-01-12 1.06 1.64 1.70 0.52 0.47 HOOad formation (ΔG3) 
111-01-13 1.04 1.81 1.55 0.52 0.58 Oad formation (ΔG2) 
111-01-14 1.04 1.72 1.49 0.68 0.49 Oad formation (ΔG2) 
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Figure 5: DFT calculated overpotentials of all 14 geometries. The different orientations are illustrated 

by different colors. 

 

Bader charge (BC) analysis 

To find a correlation between the overpotential, i.e. the electrochemical activity, structure and  

potential determining step, Bader charge analysis was carried out. 

First, the Bader charges of the bulk Ag3PO4 were calculated. The Bader charge for Ag is 10.36 

(average of three almost identical Ag), 1.38 for P, and 7.38 for O. The electron transfer can be 

calculated with respect to the free valence charge, namely 11 for Ag, 5 for P and 6 for O. 

Comparing the free valence charge with the calculated Bader charge for the bulk, we conclude 

that there is net electron transfer from Ag and P atoms to O atoms. This results in a positive 

charge of 0.64 for Ag, 3.62 for P, and a negative charge of 1.38 for O in the bulk Ag3PO4. The 

Bader charge of bulk Ag was compared to the Bader charge of surface Ag as a function of the 

adsorbed species HOad, Oad, and HOOad. No distinct correlation between the 14 different 

geometries and the Ag surfaces charges is found.  

Therefore, the charges of the oxygen ions of all adsorbed species were calculated for all 

geometries. This data is summarized together with the overpotential data in Table S1 in the 

supporting information. It is found that the BC of the oxygen decreases from HOad over Oad to 

HOOad (refer to BCOH, BCO, and BCHOO) which means that the Ag-O bond strength reduces as 

the OER proceeds. This finding is valid for all geometries, except for the 100-02-3 geometry 

with the highest overpotential of 1.27 V.  

The calculated Bader charges of the oxygen can, however, not explain the different 

overpotentials for the different geometries. Therefore, the charge redistributions (CR) during 

the OER was calculated. We choose the Oad and HOOad formation steps to study the charge 
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redistribution because the formation of Oad or HOOad is usually the potential determining step. 

The charge redistribution of the Oad formation step is calculated as CRO = BCHO – BCO; the 

charge redistribution of the HOOad formation step is calculated as CRHOO = BCO – BCHOO. 

Figure 6 shows the difference in charge redistribution of the two steps, i.e. CRO – CRHOO, as a 

function of the OER overpotential for the two potential determining steps. The charge 

redistribution difference is about one order of magnitude higher for the Oad formation step 

(black squares) compared to the HOOad formation step (red triangles). Hence, if CRO is much 

larger than CRHOO, then the Oad formation is potential determining. If CRO and CRHOO are 

similar, i.e. small value of CRO – CRHOO, then the HOOad formation is limiting. 

For both rate determining steps, CRO – CRHOO increases with increasing overpotential 

(illustrated by semi-transparent areas). Hence, we see a general trend: when the difference in 

charge redistribution of the subsequent Oad and HOOad formation step is small (low value of 

CRO – CRHOO), the overpotential is small. This means that the overpotential is directly coupled 

to the amount of charge redistribution between two subsequent steps. If not much charge needs 

to be redistributed in subsequent steps, then the overpotential is small and the electrochemical 

activity of the surface is high.  

This trend is in agreement with partial density of states (PDOS) analysis using 3 data sets 

(highlighted in Fig. 6 and DOS plots are shown in Fig. S2 in the supplement information). We 

observe that the first PDOS peak from below Fermi level (occupied states) for 111-01-12 

(overpotential = 0.47 V) shifts to above Fermi level (unoccupied states) for 110-02-8 

(overpotential = 0.78 V) and even further for 100-02-3 (overpotential = 1.27 V). The more 

states above the Fermi level, the higher the overpotential. However, since DOS analysis mostly 

provide analysis qualitatively, it is challenging to justify the small differences found in other 

data sets, where the values of the overpotentials are very similar. 

A design parameter to lower CRO – CRHOO could be the bonding strength of the adsorbed O 

to the adsorption site: If the Oad is relatively strongly bond to the Ag atoms of the Ag3PO4, the 

reactions of OHad to Oad and then to HOOad have small impact on the charge redistribution. If 

the Oad is, however, only weakly bond to the Ag, the impact of the above reactions are more 

pronounced and CRO – CRHOO is believed to be larger. 
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Figure 6. The difference in charge redistribution during the Oad and the HOOad formation steps as a 

function of overpotential. The data is grouped according to the two potential determining steps (PDS), 

namely Oad formation and OOHad formation. The shadowed areas illustrate the increase of 

overpotential with increased difference in charge redistribution. Highlighted in circles are the data 

points analyzed by PDOS in Fig. S2 in the support information.  

 

Summary and Outlook 

We have investigated the structural sensitivity of the OERs on (100), (110), and (111) surfaces 

of Ag3PO4 through a systematic analysis of reaction energies and overpotentials using DFT. In 

all our studies, the intermediate species are adsorbed on the Ag site. Our results confirmed the 

high activity of the (111) surfaces with the lowest overpotential being 0.47 V. This overpotential 

is similar to the overpotential of RuO2 (0.37 V) whose OER activity is one of the lowest 

overpotentials known for OER [20]. The overpotentials of OERs on the (110) and the (100) 

surface are, in contrast, spread widely from 0.49 V to 1.27 V. Most overpotentials (9 out of 11) 

are considerably higher than those on the (111) surfaces. This is in general in agreement with 

the literature [10, 16]. We are aware that P adsorption sites and hydroxylated P atoms as well as 

the addition of explicit solvent might play an important role in the energies and kinetics of the 

OER on Ag3PO4; such effects remain to be addressed in future studies. 

In our study, we went one step further in order to understand the reasons for the different 

overpotentials. We found that neither orientation nor the number of Ag atoms involved in the 

adsorption of the intermediate species nor the type of surface termination or the different 

potential determining reaction steps could unambiguously relate to the calculated overpotentials. 

Bader charge analysis finally revealed that charge redistribution during the OER is decisive for 

a low overpotential. If the difference in the charge redistribution between two consecutive steps, 

Oad formation and OOHad formation (CRO – CRHOO), is small, the overpotential is small; if it is 

high, the overpotential is high. This finding allows to relate the electrochemical activity, i.e. the 
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overpotential, to the atomistic changes during OER. This concept of relating the charge 

redistribution during electrochemical reactions to the overpotential is new and is here for the 

first time established for the OER mechanism of Ag3PO4. It should be noted that several factors, 

such as the surface termination, the local structure and the surrounding, affect the results of the 

charge redistribution. Thus, the charge redistribution data is an overall result of interplay of 

several factors mention above. Investigation of other electrochemical mechanisms and 

interfaces in the future is necessary to establish how universal this new concept is.. 
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