5,219 research outputs found

    Concurrent bandits and cognitive radio networks

    Full text link
    We consider the problem of multiple users targeting the arms of a single multi-armed stochastic bandit. The motivation for this problem comes from cognitive radio networks, where selfish users need to coexist without any side communication between them, implicit cooperation or common control. Even the number of users may be unknown and can vary as users join or leave the network. We propose an algorithm that combines an ϵ\epsilon-greedy learning rule with a collision avoidance mechanism. We analyze its regret with respect to the system-wide optimum and show that sub-linear regret can be obtained in this setting. Experiments show dramatic improvement compared to other algorithms for this setting

    Optical spectroscopy study of Nd(O,F)BiS2 single crystals

    Full text link
    We present an optical spectroscopy study on F-substituted NdOBiS2_2 superconducting single crystals grown using KCl/LiCl flux method. The measurement reveals a simple metallic response with a relatively low screened plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV, which is much smaller than the value expected from the first-principles calculations for an electron doping level of x=0.5, but very close to the value based on a doping level of 7%\% of itinerant electrons per Bi site as determined by ARPES experiment. The energy scales of the interband transitions are also well reproduced by the first-principles calculations. The results suggest an absence of correlation effect in the compound, which essentially rules out the exotic pairing mechanism for superconductivity or scenario based on the strong electronic correlation effect. The study also reveals that the system is far from a CDW instability as being widely discussed for a doping level of x=0.5.Comment: 5 pages, 5 figure

    Forcing and Velocity Correlations in a Vibrated Granular Monolayer

    Full text link
    The role of forcing on the dynamics of a vertically shaken granular monolayer is investigated. Using a flat plate, surprising negative velocity correlations are measured. A mechanism for this anti-correlation is proposed with support from both experimental results and molecular dynamics simulations. Using a rough plate, velocity correlations are positive, and the velocity distribution evolves from a gaussian at very low densities to a broader distribution at high densities. These results are interpreted as a balance between stochastic forcing, interparticle collisions, and friction with the plate.Comment: 4 pages, 5 figure

    Unsupervised 2D dimensionality reduction with adaptive structure learning

    Full text link
    © 2017 Massachusetts Institute of Technology. In recent years, unsupervised two-dimensional (2D) dimensionality reduction methods for unlabeled large-scale data have made progress. However, performance of these degrades when the learning of similarity matrix is at the beginning of the dimensionality reduction process.Asimilarity matrix is used to reveal the underlying geometry structure of data in unsupervised dimensionality reduction methods. Because of noise data, it is difficult to learn the optimal similarity matrix. In this letter, we propose a new dimensionality reduction model for 2D image matrices: unsupervised 2D dimensionality reductionwith adaptive structure learning (DRASL). Instead of using a predetermined similarity matrix to characterize the underlying geometry structure of the original2Dimage space, our proposed approach involves the learning of a similarity matrix in the procedure of dimensionality reduction. To realize a desirable neighbors assignment after dimensionality reduction, we add a constraint to our model such that there are exact c connected components in the final subspace. To accomplish these goals, we propose a unified objective function to integrate dimensionality reduction, the learning of the similarity matrix, and the adaptive learning of neighbors assignment into it. An iterative optimization algorithm is proposed to solve the objective function. We compare the proposed method with several 2D unsupervised dimensionality methods. K-means is used to evaluate the clustering performance. We conduct extensive experiments on Coil20, ATandT, FERET, USPS, and Yale data sets to verify the effectiveness of our proposed method

    Molecular cloning, promoter analysis and induced expression of the complement component C9 gene in the grass carp Ctenopharyngodon idella

    Get PDF
    Complement-mediated killing of pathogens through lytic pathway is an important effector mechanism of innate immune response. C9 is the ninth member of complement components, creating the membrane attack complex (MAC). In the present study, a putative cDNA sequence encoding the 650 amino acids of C9 and its genomic organization were identified in grass carp Ctenopharyngodon idella. The deduced amino acid sequence of grass carp C9 (gcC9) showed 48% and 38.5% identity to Japanese flounder and human C9, respectively. Domain search revealed that gcC9 contains a LDL receptor domain, an EGF precursor domain, a MACPF domain and two TSP domain located in the N-terminal and C-terminal, respectively. Phylogenetic analysis demonstrated that gcC9 is clustered in a same clade with Japanese flounder, pufferfish and rainbow trout C9. The gcC9 gene consists of 11 exons with 10 introns, spacing over approximately 7 kb of genomic sequence. Analysis of gcC9 promoter region revealed the presence of a TATA box and some putative transcription factor such as C/EBP, HSF, NF-AT, CHOP-C, HNF-3B, GATA-2, IK-2, EVI- 1, AP-1, CP2 and OCT-1 binding sites. The first intron region contains C/EBPb, HFH-1 and Oct-1 binding sites. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcC9 gene have similar expression patterns, being constitutively expressed in all organs examined of healthy fish, with the highest level in hepatopancreas. By real-time quantitative RT-PCR analysis, gcC9 transcripts were significantly up-regulated in head kidney, spleen, hepatopancreas and down-regulated in intestine from inactivated fish bacterial pathogen Flavobacterium columnare-stimulated fish, demonstrating the role of C9 in immune response. (c) 2007 Elsevier B.V. All rights reserved.Complement-mediated killing of pathogens through lytic pathway is an important effector mechanism of innate immune response. C9 is the ninth member of complement components, creating the membrane attack complex (MAC). In the present study, a putative cDNA sequence encoding the 650 amino acids of C9 and its genomic organization were identified in grass carp Ctenopharyngodon idella. The deduced amino acid sequence of grass carp C9 (gcC9) showed 48% and 38.5% identity to Japanese flounder and human C9, respectively. Domain search revealed that gcC9 contains a LDL receptor domain, an EGF precursor domain, a MACPF domain and two TSP domain located in the N-terminal and C-terminal, respectively. Phylogenetic analysis demonstrated that gcC9 is clustered in a same clade with Japanese flounder, pufferfish and rainbow trout C9. The gcC9 gene consists of 11 exons with 10 introns, spacing over approximately 7 kb of genomic sequence. Analysis of gcC9 promoter region revealed the presence of a TATA box and some putative transcription factor such as C/EBP, HSF, NF-AT, CHOP-C, HNF-3B, GATA-2, IK-2, EVI- 1, AP-1, CP2 and OCT-1 binding sites. The first intron region contains C/EBPb, HFH-1 and Oct-1 binding sites. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcC9 gene have similar expression patterns, being constitutively expressed in all organs examined of healthy fish, with the highest level in hepatopancreas. By real-time quantitative RT-PCR analysis, gcC9 transcripts were significantly up-regulated in head kidney, spleen, hepatopancreas and down-regulated in intestine from inactivated fish bacterial pathogen Flavobacterium columnare-stimulated fish, demonstrating the role of C9 in immune response. (c) 2007 Elsevier B.V. All rights reserved

    Short and long peptidoglycan recognition proteins (PGRPs) in zebrafish, with findings of multiple PGRP homologs in teleost fish

    Get PDF
    Peptidoglycan recognition protein (PGRP) specifically binds to peptidoglycan and is considered to be one of the pattern recognition proteins in the innate immunity of insect and mammals. Using a database mining approach and RT-PCR, multiple peptidoglycan recognition protein (PGRP) like genes have been discovered in fish including zebrafish Danio rerio, Japanese pufferfish TakiFugu rubripes and spotted green pufferfish Tetraodon nigroviridis. They share the common features of those PGRPs in arthropod and mammals, by containing a conserved PGRP domain. Based on the predicted structures, the identified zebrafish PGRP homologs resemble short and long PGRP members in arthropod and mammals. The identified PGRP genes in T. nigroviridis and TakiFugu rubripes resemble the long PGRPs, and the short PGRP genes have not been found in T. nigroviridis and TakiFugu rubripes databases. Computer modelling of these molecules revealed the presence of three alpha-helices and five or six beta-strands in all fish PGRPs reported in the present study. The long PGRP in teleost fish have multiple alternatively spliced forms, and some of the identified spliced variants, e.g., tnPGRP-L3 and tnPGRP-L4 (in: Tetraodon nigroviridis), exhibited no characters present in the PGRP homologs domain. The coding regions of zfPGRP6 (zf: zebrafish), zfPGRP2-A, zfPGRP2-B and zfPGRP-L contain five exons and four introns; however, the other PGRP-like genes including zfPGRPSC1a, zfPGRPSC2, tnPGRP-L1-, tnPGRP-L2 and frPGRP-L (fr: Takifugu rubripes) contain four exons and three introns. In zebrafish, long and short PGRP genes identified are located in different chromosomes, and an unknown locus containing another long PGRP-like gene has also been found in zebrafish, demonstrating that multiple PGRP loci may be present in fish. In zebrafish, the constitutive expressions of zfPGRP-L, zfPGRP-6 and zfPGRP-SC during ontogeny from unfertilized eggs to larvae, in different organs of adult, and the inductive expression following stimulation by Flavobacterium columnare, were detected by real-time PCR, but the levels and patterns varied for different PGRP genes, implying that different short and long PGRPs may play different roles in innate immune response. (c) 2007 Elsevier Ltd. All rights reserved.Peptidoglycan recognition protein (PGRP) specifically binds to peptidoglycan and is considered to be one of the pattern recognition proteins in the innate immunity of insect and mammals. Using a database mining approach and RT-PCR, multiple peptidoglycan recognition protein (PGRP) like genes have been discovered in fish including zebrafish Danio rerio, Japanese pufferfish TakiFugu rubripes and spotted green pufferfish Tetraodon nigroviridis. They share the common features of those PGRPs in arthropod and mammals, by containing a conserved PGRP domain. Based on the predicted structures, the identified zebrafish PGRP homologs resemble short and long PGRP members in arthropod and mammals. The identified PGRP genes in T. nigroviridis and TakiFugu rubripes resemble the long PGRPs, and the short PGRP genes have not been found in T. nigroviridis and TakiFugu rubripes databases. Computer modelling of these molecules revealed the presence of three alpha-helices and five or six beta-strands in all fish PGRPs reported in the present study. The long PGRP in teleost fish have multiple alternatively spliced forms, and some of the identified spliced variants, e.g., tnPGRP-L3 and tnPGRP-L4 (in: Tetraodon nigroviridis), exhibited no characters present in the PGRP homologs domain. The coding regions of zfPGRP6 (zf: zebrafish), zfPGRP2-A, zfPGRP2-B and zfPGRP-L contain five exons and four introns; however, the other PGRP-like genes including zfPGRPSC1a, zfPGRPSC2, tnPGRP-L1-, tnPGRP-L2 and frPGRP-L (fr: Takifugu rubripes) contain four exons and three introns. In zebrafish, long and short PGRP genes identified are located in different chromosomes, and an unknown locus containing another long PGRP-like gene has also been found in zebrafish, demonstrating that multiple PGRP loci may be present in fish. In zebrafish, the constitutive expressions of zfPGRP-L, zfPGRP-6 and zfPGRP-SC during ontogeny from unfertilized eggs to larvae, in different organs of adult, and the inductive expression following stimulation by Flavobacterium columnare, were detected by real-time PCR, but the levels and patterns varied for different PGRP genes, implying that different short and long PGRPs may play different roles in innate immune response. (c) 2007 Elsevier Ltd. All rights reserved

    The first non-mammalian CXCR5 in a teleost fish: molecular cloning and expression analysis in grass carp (Ctenopharyngodon idella)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemokines, a group of small and structurally related proteins, mediate chemotaxis of various cell types via chemokine receptors. In mammals, seven different CXC chemokine receptors denoted as CXCR1 to CXCR7 have been reported. However, the chemokine receptor CXCR5 has not been reported in other vertebrates.</p> <p>Results</p> <p>In the present study, the genomic sequence of CXCR5 was isolated from the grass carp <it>Ctenopharyngodon idella</it>. The cDNA sequence of grass carp CXCR5 (gcCXCR5) consists of 1518 bp with a 43 bp 5' untranslated region (UTR) and a 332 bp 3' UTR, with an open reading frame of 1143 bp encoding 381 amino acids which are predicted to have seven transmembrane helices. The characteristic residues (DRYLAIVHA) and conserved cysteine residues are located in the extracellular regions and in the third to seventh transmembrane domains. The deduced amino acid sequence shows 37.6-66.6% identities with CXCR5 of mammals, avian and other fish species. The grass carp gene consists of two exons, with one intervening intron, spaced over 2081 bp of genomic sequence. Phylogenetic analysis clearly demonstrated that the gcCXCR5 is clustered with those in other teleost fish and then in chicken and mammals. Real-time PCR analysis showed that gcCXCR5 was expressed in all tested organs/tissues and its expression level was the highest in trunk kidney, followed by in the spleen. The expression of gcCXCR5 was significantly modulated by immunostimulants such as peptidoglycan (PGN), lipopolysaccharide (LPS), polyinosinic-polycytidylic acid sodium salt (Poly I:C) and phytohaemagglutinin (PHA).</p> <p>Conclusion</p> <p>The cDNA and genomic sequences of CXCR5 have been successfully characterized in a teleost fish, the grass carp. The CXCR5 has in general a constitutive expression in organs/tissues examined, whereas its expression was significantly up-regulated in immune organs and down-regulated in brain, indicating its potential role in immune response and central nervous system.</p

    Ig heavy chain genes and their locus in grass carp Ctenopharyngodon idella

    Get PDF
    The cDNA and genomic sequences of IgD and IgZ were characterized in grass carp Ctenopharyngodon idella in the present study, and with the identification of a BAC clone covering zeta, mu, and delta genes, the IgH locus containing these Ig genes and other V, D, J genes was also illustrated in this fish. Secretory and membrane-bound IgZ were identified, with two transmembrane exons spliced within the CH4 exon, as reported in IgM of mammals and IgZ in other teleost fish. The first and second constant domains of IgZ shows more than 90% nucleotide identity with respective domains of grass carp IgM. The IgD has a structure of delta 1-(delta 2-delta 3-delta 4)(2)-delta 5-delta 6-delta 7-TM-UTR, with the repeat of delta 2-delta 3-delta 4; but intron was not found between the two repeat, i.e. between the first delta 2-delta 3-delta 4 (delta 2.1-delta 3.1-delta 4.1) and the second delta 2-delta 3-delta 4 (delta 2.2-delta 3.2-delta 4.2), and the intron between delta 3.1 and delta 4.1 was much shorter than the intron between delta 3.2 and delta 4.2. The genomic organization of the IgH locus has a pattern of Vn-Dn-Jn-C zeta-Dn-Jn-C mu-C delta, as reported in other teleost fish. Thirteen V-H, fourteen D, and twelve J(H) genes were observed in this locus, with the similarity of three D segments and four J(H) segments being the same in the upstream of C zeta, and C mu. The transcriptional enhancer located at the mu-delta intergenic region was also analyzed and it seems possible that this enhancer is functional as verified in zebrafish and channel catfish. (C) 2010 Elsevier Ltd. All rights reserved
    • …
    corecore