61 research outputs found

    A Statistical Study on Force-Freeness of Solar Magnetic Fields in the Photosphere

    Full text link
    It is an indisputable fact that solar magnetic fields are force-free in the corona, where force free fields means that current and magnetic fields are parallel and there is no Lorentz force in the fields. While the force-free extent of photospheric magnetic fields remains open. In this paper, the statistical results about it is given. The vector magnetograms (namely, BxB_{x}, ByB_{y} and BzB_{z} in heliocentric coordinates) are employed, which are deduced and calibrated from Stokes spectra, observed by Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station (HSOS) are used. We study and calibrated 925 magnetograms calibrated by two sets of calibration coefficients, that indicate the relations between magnetic fields and the strength of Stokes spectrum and can be calculated either theoretically or empirically. The statistical results show that the majority of active region magnetic fields are not consistent with the force-free model.Comment: 10 pages, 5 figures, has been accepted by PAS

    Phase Field Model for Three-Dimensional Dendritic Growth with Fluid Flow

    Full text link
    We study the effect of fluid flow on three-dimensional (3D) dendrite growth using a phase-field model on an adaptive finite element grid. In order to simulate 3D fluid flow, we use an averaging method for the flow problem coupled to the phase-field method and the Semi-Implicit Approximated Projection Method (SIAPM). We describe a parallel implementation for the algorithm, using Charm++ FEM framework, and demonstrate its efficiency. We introduce an improved method for extracting dendrite tip position and tip radius, facilitating accurate comparison to theory. We benchmark our results for two-dimensional (2D) dendrite growth with solvability theory and previous results, finding them to be in good agreement. The physics of dendritic growth with fluid flow in three dimensions is very different from that in two dimensions, and we discuss the origin of this behavior

    Triggering an eruptive flare by emerging flux in a solar active-region complex

    Full text link
    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (approximately 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and Stellar Flares. 25 pages, 12 figure

    Enthesis tissue engineering: biological requirements meet at the interface

    Get PDF
    Tendon-to-bone interface (enthesis) exhibits a complex multiscale architectural and compositional organization maintained by a heterogeneous cellular environment. Orthopedic surgeons have been facing several challenges when treating tendon pullout or tear from the bony insertion due to unsatisfactory surgical outcomes and high retear rates. The limited understanding of enthesis hinders the development of new treatment options toward enhancing regeneration. Mimicking the natural tissue structure and composition is still a major challenge to be overcome. In this review, we critically assess current tendon-to-bone interface tissue engineering strategies through the use of biological, biochemical, or biophysical cues, which must be ultimately combined into sophisticated gradient systems. Cellular strategies are described, focusing on cell sources and cocultures to emulate a physiological heterotypic niche, as well as hypoxic environments, alongside with growth factor delivery and the use of platelet-rich hemoderivatives. Biomaterial design considerations are revisited, highlighting recent progresses in tendon-to-bone scaffolds. Mechanical loading is addressed to uncover prospective engineering advances. Finally, research challenges and translational aspects are considered. In summary, we highlight the importance of deeply investigating enthesis biology toward establishing foundational expertise and integrate cues from the native niche into novel biomaterial engineering, aiming at moving today's research advances into tomorrow's regenerative therapies.Authors thank the support from the European Union Framework Programme for Research and Innovation HORIZON2020 [TEAMING Grant agreement No 739572 - The Discoveries CTR]; FCT–Fundação para a Ciência e a Tecnologia for the PhD grant of IC [PD/BD/128088/2016]; the Project NORTE-01-0145-FEDER-000021:“Accelerating tissue engineering and personalized medicine discoveries by the integration of key enabling nanotechnologies, marine-derived biomaterials and stem cells”, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and the ERC Consolidator grant of ME [ERC-2017-CoG-772817]

    4pi Models of CMEs and ICMEs

    Full text link
    Coronal mass ejections (CMEs), which dynamically connect the solar surface to the far reaches of interplanetary space, represent a major anifestation of solar activity. They are not only of principal interest but also play a pivotal role in the context of space weather predictions. The steady improvement of both numerical methods and computational resources during recent years has allowed for the creation of increasingly realistic models of interplanetary CMEs (ICMEs), which can now be compared to high-quality observational data from various space-bound missions. This review discusses existing models of CMEs, characterizing them by scientific aim and scope, CME initiation method, and physical effects included, thereby stressing the importance of fully 3-D ('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication in Solar Physics (SUN-360 topical issue

    Evaluation of Allelic Expression of Imprinted Genes in Adult Human Blood

    Get PDF
    Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted (LOI) expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults

    Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    Get PDF
    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint

    Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs

    Get PDF
    Tendon and ligaments have poor healing capacity and when injured often require surgical intervention. Tissue replacement via autografts and allografts are non-ideal strategies that can lead to future problems. As an alternative, scaffold-based tissue engineering strategies are being pursued. In this review, we describe design considerations and major recent advancements of scaffolds for tendon/ligament engineering. Specifically, we outline native tendon/ligament characteristics critical for design parameters and outcome measures, and introduce synthetic and naturally-derived biomaterials used in tendon/ligament scaffolds. We will describe applications of these biomaterials in advanced tendon/ligament engineering strategies including the utility of scaffold functionalization, cyclic strain, growth factors, and interface considerations. The goal of this review is to compile and interpret the important findings of recent tendon/ligament engineering research in an effort towards the advancement of regenerative strategies
    corecore