12,556 research outputs found

    Topological Influence-Aware Recommendation on Social Networks

    Full text link
    Users in online networks exert different influence during the process of information propagation, and the heterogeneous influence may contribute to personalized recommendations. In this paper, we analyse the topology of social networks to investigate users’ influence strength on their neighbours. We also exploit the user-item rating matrix to find the importance of users’ ratings and determine their influence on entire social networks. Based on the local influence between users and global influence over the whole network, we propose a recommendation method with indirect interactions that makes adequate use of users’ relationships on social networks and users’ rating data. The two kinds of influence are incorporated into a matrix factorization framework. We also consider indirect interactions between users who do not have direct links with each other. Experimental results on two real-world datasets demonstrate that our proposed framework performs better than other state-of-the-art methods for all users and cold-start users. Compared with node degrees, betweenness, and clustering coefficients, coreness constitutes the best topological descriptor to identify users’ local influence, and recommendations with the measure of coreness outperform other descriptors of user influence.</jats:p

    Subdwarf B stars from the common envelope ejection channel

    Full text link
    From the canonical binary scenario, the majority of sdBs are produced from low-mass stars with degenerate cores where helium is ignited in a way of flashes. Due to numerical difficulties, the models of produced sdBs are generally constructed from more massive stars with non-degenerate cores, leaving several uncertainties on the exact characteristics of sdB stars. Employing MESA, we systematically studied the characteristics of sdBs produced from the common envelope (CE) ejection channel, and found that the sdB stars produced from the CE ejection channel appear to form two distinct groups on the effective temperature-gravity diagram. One group (the flash-mixing model) almost has no H-rich envelope and crows at the hottest temperature end of the extremely horizontal branch (EHB), while the other group has significant H-rich envelope and spreads over the whole canonical EHB region. The key factor for the dichotomy of the sdB properties is the development of convection during the first helium flash, which is determined by the interior structure of the star after the CE ejection. For a given initial stellar mass and a given core mass at the onset of the CE, if the CE ejection stops early, the star has a relatively massive H-rich envelope, resulting in a canonical sdB generally. The fact of only a few short-orbital-period sdB binaries being in the flash-mixing sdB region and the lack of He-rich sdBs in short-orbital-period binaries indicate that the flash mixing is not very often in the products of the CE ejection. A falling back process after the CE ejection, similar to that happened in nova, is an appropriate way of increasing the envelope mass, then prevents the flash mixing.Comment: accepted by A&A 12 pages, 11 figure

    The effect of discrete breathers on heat conduction in nonlinear chains

    Full text link
    Intensive studies in the past decades have suggested that the heat conductivity κ\kappa diverges with the system size LL as κ∼Lα\kappa\sim L^{\alpha} in one dimensional momentum conserving nonlinear lattices and the value of α\alpha is universal. But in the Fermi-Pasta-Ulam-β\beta lattices with next-nearest-neighbor interactions we find that α\alpha strongly depends on γ\gamma, the ratio of the next-nearest-neighbor coupling to the nearest-neighbor coupling. We relate the γ\gamma-dependent heat conduction to the interactions between the long-wavelength phonons and the randomly distributed discrete breathers. Our results provide an evidence to show that the nonlinear excitations affect the heat transport.Comment: 4 pages, 5 figure
    • …
    corecore