105,789 research outputs found
Effect of distribution of stickers along backbone on temperature-dependent structural properties in associative polymer solutions
Effect of distribution of stickers along the backbone on structural
properties in associating polymer solutions is studied using self-consistent
field lattice model. Only two inhomogeneous morphologies, i.e.,
microfluctuation homogenous (MFH) and micelle morphologies, are observed. If
the system is cooled, the solvent content within the aggregates decreases. When
the spacing of stickers along the backbone is increased the
temperature-dependent range of aggregation in MFH morphology and half-width of
specific heat peak for homogenous solutions-MFH transition increase, and the
symmetry of the peak decreases. However, with increasing spacing of stickers,
the above three corresponding quantities related to micelles behave
differently. It is demonstrated that the broad nature of the observed
transitions can be ascribed to the structural changes which accompany the
replacement of solvents in aggregates by polymer, which is consistent with the
experimental conclusion. It is found that different effect of spacing of
stickers on the two transitions can be interpreted in terms of intrachain and
interchain associations.Comment: 10 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1202.459
The effect of asymmetry of the coil block on self-assembly in ABC coil-rod-coil triblock copolymers
Using the self-consistent field approach, the effect of asymmetry of the coil
block on the microphase separation is focused in ABC coil-rod-coil triblock
copolymers. For different fractions of the rod block , some stable
structures are observed, i.e., lamellae, cylinders, gyroid, and core-shell
hexagonal lattice, and the phase diagrams are constructed. The calculated
results show that the effect of the coil block fraction is
dependent on . When , the effect of asymmetry of
the coil block is similar to that of the ABC flexible triblock copolymers; When
, the self-assembly of ABC coil-rod-coil triblock copolymers
behaves like rod-coil diblock copolymers under some condition. When continues to increase, the effect of asymmetry of the coil block reduces.
For , under the symmetrical and rather asymmetrical
conditions, an increase in the interaction parameter between different
components leads to different transitions between cylinders and lamellae. The
results indicate some remarkable effect of the chain architecture on
self-assembly, and can provide the guidance for the design and synthesis of
copolymer materials.Comment: 9 pages, 3 figure
Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions
The effects of the length of each hydrophobic end block N_{st} and polymer
concentration \bar{\phi}_{P} on the transition broadness in amphiphilic ABA
symmetric triblock copolymer solutions are studied using the self-consistent
field lattice model. When the system is cooled, micelles are observed, i.e.,the
homogenous solution (unimer)-micelle transition occurs. When N_{st} is
increased, at fixed \bar{\phi}_{P}, micelles occur at higher temperature, and
the temperature-dependent range of micellar aggregation and half-width of
specific heat peak for unimer-micelle transition increase monotonously.
Compared with associative polymers, it is found that the magnitude of the
transition broadness is determined by the ratio of hydrophobic to hydrophilic
blocks, instead of chain length. When \bar{\phi}_{P} is decreased, given a
large N_{st}, the temperature-dependent range of micellar aggregation and
half-width of specific heat peak initially decease, and then remain nearly
constant. It is shown that the transition broadness is concerned with the
changes of the relative magnitudes of the eductions of nonstickers and solvents
from micellar cores.Comment: 8 pages, 4 figure
- …