46,336 research outputs found

    Recent progress in random metric theory and its applications to conditional risk measures

    Full text link
    The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures. This paper includes eight sections. Section 1 is a longer introduction, which gives a brief introduction to random metric theory, risk measures and conditional risk measures. Section 2 gives the central framework in random metric theory, topological structures, important examples, the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals. Section 3 gives several important representation theorems for random conjugate spaces. Section 4 gives characterizations for a complete random normed module to be random reflexive. Section 5 gives hyperplane separation theorems currently available in random locally convex modules. Section 6 gives the theory of random duality with respect to the locally L0−L^{0}-convex topology and in particular a characterization for a locally L0−L^{0}-convex module to be L0−L^{0}-pre−-barreled. Section 7 gives some basic results on L0−L^{0}-convex analysis together with some applications to conditional risk measures. Finally, Section 8 is devoted to extensions of conditional convex risk measures, which shows that every representable L∞−L^{\infty}-type of conditional convex risk measure and every continuous Lp−L^{p}-type of convex conditional risk measure (1≤p<+∞1\leq p<+\infty) can be extended to an LF∞(E)−L^{\infty}_{\cal F}({\cal E})-type of σϵ,λ(LF∞(E),LF1(E))−\sigma_{\epsilon,\lambda}(L^{\infty}_{\cal F}({\cal E}), L^{1}_{\cal F}({\cal E}))-lower semicontinuous conditional convex risk measure and an LFp(E)−L^{p}_{\cal F}({\cal E})-type of Tϵ,λ−{\cal T}_{\epsilon,\lambda}-continuous conditional convex risk measure (1≤p<+∞1\leq p<+\infty), respectively.Comment: 37 page

    A large-scale one-way quantum computer in an array of coupled cavities

    Full text link
    We propose an efficient method to realize a large-scale one-way quantum computer in a two-dimensional (2D) array of coupled cavities, based on coherent displacements of an arbitrary state of cavity fields in a closed phase space. Due to the nontrivial geometric phase shifts accumulating only between the qubits in nearest-neighbor cavities, a large-scale 2D cluster state can be created within a short time. We discuss the feasibility of our method for scale solid-state quantum computationComment: 5 pages, 3 figure

    On the Cauchy problem for the magnetic Zakharov system

    Full text link
    In this paper, we study the Cauchy problem of the magnetic type Zakharov system which describes the pondermotive force and magnetic field generation effects resulting from the non-linear interaction between plasma-wave and particles. By using the energy method to derive a priori bounds and an approximation argument for the construction of solutions, we obtain local existence and uniqueness results for the magnetic Zakharov system in the case of d=2,3d=2,3

    Combinations of antioxidants and/or of epigenetic enzyme inhibitors allow for enhanced collection of mouse bone marrow hematopoietic stem cells in ambient air

    Get PDF
    Hematopoietic cell transplantation (HCT) is a treatment for malignant and non-malignant disorders. However, sometimes the numbers of donor hematopoietic stem cells (HSC) are limiting, which can compromise the success of HCT. We recently published that collection and processing of mouse bone marrow (BM) and human cord blood cells in a hypoxic atmosphere of 3% O2 or in ambient air (~21% O2) in the presence of cyclosporine A yields increased numbers of HSC. We now show that collection and processing of mouse BM cells in ambient air in the presence of specific combinations of anti-oxidants and/or inhibitors of epigenetic enzymes can also enhance the collection of HSC, information of potential relevance for enhanced efficacy of HCT
    • …
    corecore