15,678 research outputs found
Global structures in a composite system of two scale-free discs with a coplanar magnetic field
We investigate a theoretical MHD disc problem involving a composite disc
system of gravitationally coupled stellar and gaseous discs with a coplanar
magnetic field in the presence of an axisymmetric dark matter halo. The two
discs are expediently approximated as razor-thin, a ring-like magnetic field,
and a power-law rotation curve in radius . By imposing the scale-free
condition, we construct analytically stationary global MHD perturbation
configurations for both aligned and logarithmic spiral patterns. MHD
perturbation configurations in a composite system of partial discs in the
presence of an axisymmetric dark matter halo are also considered. We derive
analytically the stationary MHD dispersion relations for both aligned and
unaligned perturbation structures and analyze the corresponding phase
relationships between surface mass densities and the magnetic field. Compared
with earlier results, we obtain three solution branches corresponding to super
fast MHD density waves, fast MHD density waves and slow MHD density waves,
respectively. By evaluating the unaligned case, we determine the marginal
stability curves where the two unstable regimes corresponding to Jeans collapse
instability and ring fragmentation instability are identified. We find that the
aligned case is simply the limit of the unaligned case with the
radial wavenumber . We further show that a composite system of partial
discs behaves much differently from a composite system of full discs in certain
aspects. Our formalism provides a useful theoretical framework in the study of
stationary global perturbation configurations for MHD disc galaxies with bars,
spirals and barred spirals.Comment: 35 pages, 24 figures, Accepted for publication in MNRA
Retinal image enhancement via a multiscale morphological approach with OCCO filter.
Retinal images are widely used for diagnosis and eye disease detection. However, due to the acquisition process, retinal images often have problems such as low contrast, blurry details or artifacts. These problems may severely affect the diagnosis. Therefore, it is very impor tant to enhance the visual quality of such images. Contrast enhancement is a pre-processing applied to images to improve their visual quality. This technique betters the identification of retinal structures in degraded reti nal images. In this work, a novel algorithm based on multi-scale mathe matical morphology is presented. First, the original image is blurred us ing the Open-Close Close-Open (OCCO) filter to reduce any artifacts in the image. Next, multiple bright and dark features are extracted from the filtered image by the Top-Hat transform. Finally, the maximum bright values are added to the original image and the maximum dark values are subtracted from the original image, previously adjusted by a weight. The algorithm was tested on 397 retinal images from the public STARE database. The proposed algorithm was compared with state of the art al gorithms and results show that the proposal is more efficient in improving contrast, maintaining similarity with the original image and introducing less distortion than the other algorithms. According to ophthalmologists, the algorithm, by improving retinal images, provides greater clarity in the blood vessels of the retina and would facilitate the identification of pathologies.CONACYT - Consejo Nacional de Ciencia y TecnologíaPROCIENCI
Granulocyte, granulocyte–macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells
We and other researchers have previously found that colony-stimulating factors (CSFs), which generally include granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), promote invasion by lung cancer cells. In the present study, we studied the effects of these CSFs on gelatinase production, urokinase plasminogen activator (uPA) production and their activity in human lung cancer cells. Gelatin zymographs of conditioned media derived from human lung adenocarcinoma cell lines revealed two major bands of gelatinase activity at 68 and 92 kDa, which were characterized as matrix metalloproteinase (MMP)-2 and MMP-9 respectively. Treatment with CSFs increased the 68- and 92-kDa activity and converted some of a 92-kDa proenzyme to an 82-kDa enzyme that was consistent with an active form of the MMP-9. Plasminogen activator zymographs of the conditioned media from the cancer cells showed that CSF treatment resulted in an increase in a 48–55 kDa plasminogen-dependent gelatinolytic activity that was characterized as human uPA. The conditioned medium from the cancer cells treated with CSFs stimulated the conversion of plasminogen to plasmin, providing a direct demonstration of the ability of enhanced uPA to increase plasmin-dependent proteolysis. The enhanced invasive behaviour of the cancer cells stimulated by CSFs was well correlated with the increase in MMPs and uPA activities. These data suggest that the enhanced production of extracellular matrix-degrading proteinases by the cancer cells in response to CSF treatment may represent a biochemical mechanism which promotes the invasive behaviour of the cancer cells. © 1999 Cancer Research Campaig
The CAPM strikes back? An equilibrium model with disasters
Embedding disasters into a general equilibrium model with heterogeneous firms induces strong nonlinearity in the pricing kernel, helping explain the empirical failure of the (consumption) CAPM. Our single-factor model reproduces the failure of the CAPM in explaining the value premium in finite samples without disasters and its relative success in samples with disasters. Due to beta measurement errors, the estimated beta-return relation is flat, consistent with the beta “anomaly,” even though the true beta-return relation is strongly positive. Finally, the consumption CAPM fails in simulations, even though a nonlinear model with the true pricing kernel holds exactly by construction
Research on data transmission and energy consumption optimization in steel plant terminal networks based on improved sep protocol
In steel plants with harsh conditions, numerous devices equipped with wireless sensors generate vast data and high energy consumption. Our study introduces the optimized PK-SEP algorithm, enhancing the Stable Election Protocol (SEP) and traditional K-means clustering with the elbow method and particle swarm optimization. This approach, tailored for large-scale WSNs in steel plants, effectively extends network lifespan, conserves energy, and improves data throughput, offering a viable solution for energy issues in WSNs and potentially boosting steel production efficiency and sustainability
The topological AC effect on noncommutative phase space
The Aharonov-Casher (AC) effect in non-commutative(NC) quantum mechanics is
studied. Instead of using the star product method, we use a generalization of
Bopp's shift method. After solving the Dirac equations both on noncommutative
space and noncommutative phase space by the new method, we obtain the
corrections to AC phase on NC space and NC phase space respectively.Comment: 8 pages, Latex fil
Applying spatial reasoning to topographical data with a grounded geographical ontology
Grounding an ontology upon geographical data has been pro-
posed as a method of handling the vagueness in the domain more effectively. In order to do this, we require methods of reasoning about the spatial relations between the regions within the data. This stage can be computationally expensive, as we require information on the location of
points in relation to each other. This paper illustrates how using knowledge about regions allows us to reduce the computation required in an efficient and easy to understand manner. Further, we show how this system can be implemented in co-ordination with segmented data to reason abou
Determination of astrophysical 12N(p,g)13O reaction rate from the 2H(12N, 13O)n reaction and its astrophysical implications
The evolution of massive stars with very low-metallicities depends critically
on the amount of CNO nuclides which they produce. The
N(,\,)O reaction is an important branching point in
the rap-processes, which are believed to be alternative paths to the slow
3 process for producing CNO seed nuclei and thus could change the fate
of massive stars. In the present work, the angular distribution of the
H(N,\,O) proton transfer reaction at =
8.4 MeV has been measured for the first time. Based on the Johnson-Soper
approach, the square of the asymptotic normalization coefficient (ANC) for the
virtual decay of O N + was
extracted to be 3.92 1.47 fm from the measured angular
distribution and utilized to compute the direct component in the
N(,\,)O reaction. The direct astrophysical S-factor at
zero energy was then found to be 0.39 0.15 keV b. By considering the
direct capture into the ground state of O, the resonant capture via the
first excited state of O and their interference, we determined the total
astrophysical S-factors and rates of the N(,\,)O
reaction. The new rate is two orders of magnitude slower than that from the
REACLIB compilation. Our reaction network calculations with the present rate
imply that N()O will only compete successfully with
the decay of N at higher (two orders of magnitude)
densities than initially predicted.Comment: 8 figures, 2 tables, Submitted to Physical Review
The 13N(d,n)14O Reaction and the Astrophysical 13N(p,g)14O Reaction Rate
N()O is one of the key reactions in the hot CNO cycle
which occurs at stellar temperatures around 0.1. Up to now, some
uncertainties still exist for the direct capture component in this reaction,
thus an independent measurement is of importance. In present work, the angular
distribution of the N()O reaction at = 8.9
MeV has been measured in inverse kinematics, for the first time. Based on the
distorted wave Born approximation (DWBA) analysis, the nuclear asymptotic
normalization coefficient (ANC), , for the ground state of
O N + is derived to be fm. The
N()O reaction is analyzed with the R-matrix approach,
its astrophysical S-factors and reaction rates at energies of astrophysical
relevance are then determined with the ANC. The implications of the present
reaction rates on the evolution of novae are then discussed with the reaction
network calculations.Comment: 17 pages and 8 figure
- …