52,466 research outputs found
New Lepton Family Symmetry and Neutrino Tribimaximal Mixing
The newly proposed finite symmetry Sigma(81) is applied to the problem of
neutrino tribimaximal mixing. The result is more satisfactory than those of
previous models based on A_4 in that the use of auxiliary symmetries (or
mechanisms) may be avoided. Deviations from the tribimaximal pattern are
expected, but because of its basic structure, only tan^2 (theta_12) may differ
significantly from 0.5 (say 0.45) with sin^2 (2 theta_23) remaining very close
to one, and theta_13 very nearly zero.Comment: 8 pages, no figur
Dynamics of ultra-intense circularly polarized solitons under inhomogeneous plasmas
The dynamics of the ultra-intense circularly polarized solitons under
inhomogeneous plasmas are examined. The interaction is modeled by the Maxwell
and relativistic hydrodynamic equations and is solved with fully implicit
energy-conserving numerical scheme. It is shown that a propagating weak soliton
can be decreased and reflected by increasing plasma background, which is
consistent with the existing studies based on hypothesis of weak density
response. However it is found that ultra-intense soliton is well trapped and
kept still when encountering increasing background. Probably, this founding can
be applied for trapping and amplifying high-intensity laser-fields.Comment: 4 pages, 3 figures, submitted to Phys. Plasma
Monte-Carlo approach to calculate the proton stopping in warm dense matter within particle-in-cell simulations
A Monte-Carlo approach to proton stopping in warm dense matter is implemented
into an existing particle-in-cell code. The model is based on multiple
binary-collisions among electron-electron, electron-ion and ion-ion, taking
into account contributions from both free and bound electrons, and allows to
calculate particle stopping in much more natural manner. At low temperature
limit, when ``all'' electron are bounded at the nucleus, the stopping power
converges to the predictions of Bethe-Bloch theory, which shows good
consistency with data provided by the NIST. With the rising of temperatures,
more and more bound electron are ionized, thus giving rise to an increased
stopping power to cold matter, which is consistent with the report of a
recently experimental measurement [Phys. Rev. Lett. 114, 215002 (2015)]. When
temperature is further increased, with ionizations reaching the maximum,
lowered stopping power is observed, which is due to the suppression of
collision frequency between projected proton beam and hot plasmas in the
target.Comment: 6 pages, 4 figure
Monte-Carlo approach to calculate the ionization of warm dense matter within particle-in-cell simulations
A physical model based on a Monte-Carlo approach is proposed to calculate the
ionization dynam- ics of warm dense matters (WDM) within particle-in-cell
simulations, and where the impact (col- lision) ionization (CI), electron-ion
recombination (RE) and ionization potential depression (IPD) by surrounding
plasmas are taken into consideration self-consistently. When compared with
other models, which are applied in the literature for plasmas near thermal
equilibrium, the temporal re- laxation of ionization dynamics can also be
simulated by the proposed model. Besides, this model is general and can be
applied for both single elements and alloys with quite different composi-
tions. The proposed model is implemented into a particle-in-cell (PIC) code,
with (final) ionization equilibriums sustained by competitions between CI and
its inverse process (i.e., RE). Comparisons between the full model and model
without IPD or RE are performed. Our results indicate that for bulk aluminium
in the WDM regime, i) the averaged ionization degree increases by including
IPD; while ii) the averaged ionization degree is significantly over estimated
when the RE is neglected. A direct comparison from the PIC code is made with
the existing models for the dependence of averaged ionization degree on thermal
equilibrium temperatures, and shows good agreements with that generated from
Saha-Boltzmann model or/and FLYCHK code.Comment: 7 pages, 4 figure
Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime
It is shown that well collimated mono-energetic ion beams with a large
particle number can be generated in the hole-boring radiation pressure
acceleration regime by using an elliptically polarized laser pulse with
appropriate theoretically determined laser polarization ratio. Due to the
effect, the double-layer charge separation region is
imbued with hot electrons that prevent ion pileup, thus suppressing the
double-layer oscillations. The proposed mechanism is well confirmed by
Particle-in-Cell simulations, and after suppressing the longitudinal
double-layer oscillations, the ion beams driven by the elliptically polarized
lasers own much better energy spectrum than those by circularly polarized
lasers.Comment: 6 pages, 5 figures, Phys. Plasmas (2013) accepte
- …