52,466 research outputs found

    New Lepton Family Symmetry and Neutrino Tribimaximal Mixing

    Get PDF
    The newly proposed finite symmetry Sigma(81) is applied to the problem of neutrino tribimaximal mixing. The result is more satisfactory than those of previous models based on A_4 in that the use of auxiliary symmetries (or mechanisms) may be avoided. Deviations from the tribimaximal pattern are expected, but because of its basic structure, only tan^2 (theta_12) may differ significantly from 0.5 (say 0.45) with sin^2 (2 theta_23) remaining very close to one, and theta_13 very nearly zero.Comment: 8 pages, no figur

    Dynamics of ultra-intense circularly polarized solitons under inhomogeneous plasmas

    Full text link
    The dynamics of the ultra-intense circularly polarized solitons under inhomogeneous plasmas are examined. The interaction is modeled by the Maxwell and relativistic hydrodynamic equations and is solved with fully implicit energy-conserving numerical scheme. It is shown that a propagating weak soliton can be decreased and reflected by increasing plasma background, which is consistent with the existing studies based on hypothesis of weak density response. However it is found that ultra-intense soliton is well trapped and kept still when encountering increasing background. Probably, this founding can be applied for trapping and amplifying high-intensity laser-fields.Comment: 4 pages, 3 figures, submitted to Phys. Plasma

    Monte-Carlo approach to calculate the proton stopping in warm dense matter within particle-in-cell simulations

    Full text link
    A Monte-Carlo approach to proton stopping in warm dense matter is implemented into an existing particle-in-cell code. The model is based on multiple binary-collisions among electron-electron, electron-ion and ion-ion, taking into account contributions from both free and bound electrons, and allows to calculate particle stopping in much more natural manner. At low temperature limit, when ``all'' electron are bounded at the nucleus, the stopping power converges to the predictions of Bethe-Bloch theory, which shows good consistency with data provided by the NIST. With the rising of temperatures, more and more bound electron are ionized, thus giving rise to an increased stopping power to cold matter, which is consistent with the report of a recently experimental measurement [Phys. Rev. Lett. 114, 215002 (2015)]. When temperature is further increased, with ionizations reaching the maximum, lowered stopping power is observed, which is due to the suppression of collision frequency between projected proton beam and hot plasmas in the target.Comment: 6 pages, 4 figure

    Monte-Carlo approach to calculate the ionization of warm dense matter within particle-in-cell simulations

    Full text link
    A physical model based on a Monte-Carlo approach is proposed to calculate the ionization dynam- ics of warm dense matters (WDM) within particle-in-cell simulations, and where the impact (col- lision) ionization (CI), electron-ion recombination (RE) and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal re- laxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different composi- tions. The proposed model is implemented into a particle-in-cell (PIC) code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium in the WDM regime, i) the averaged ionization degree increases by including IPD; while ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures, and shows good agreements with that generated from Saha-Boltzmann model or/and FLYCHK code.Comment: 7 pages, 4 figure

    Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    Full text link
    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J×B\bm{J}\times\bm{B} effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.Comment: 6 pages, 5 figures, Phys. Plasmas (2013) accepte
    • …
    corecore