19,589 research outputs found
A new class of -d topological superconductor with topological classification
The classification of topological states of matter depends on spatial
dimension and symmetry class. For non-interacting topological insulators and
superconductors the topological classification is obtained systematically and
nontrivial topological insulators are classified by either integer or .
The classification of interacting topological states of matter is much more
complicated and only special cases are understood. In this paper we study a new
class of topological superconductors in dimensions which has
time-reversal symmetry and a spin conservation symmetry. We
demonstrate that the superconductors in this class is classified by
when electron interaction is considered, while the
classification is without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur
Microscopic origin of local moments in a zinc-doped high- superconductor
The formation of a local moment around a zinc impurity in the high-
cuprate superconductors is studied within the framework of the bosonic
resonating-valence-bond (RVB) description of the model. A topological
origin of the local moment has been shown based on the phase string effect in
the bosonic RVB theory. It is found that such an moment distributes
near the zinc in a form of staggered magnetic moments at the copper sites. The
corresponding magnetic properties, including NMR spin relaxation rate, uniform
spin susceptibility, and dynamic spin susceptibility, etc., calculated based on
the theory, are consistent with the experimental measurements. Our work
suggests that the zinc substitution in the cuprates provide an important
experimental evidence for the RVB nature of local physics in the original (zinc
free) state.Comment: The topological reason of local moment formation is given. One figure
is adde
Effects of tai chi on postural control during dual-task stair negotiation in knee osteoarthritis : a randomised controlled trial protocol
Stair ascent and descent require complex integration between sensory and motor systems; individuals with knee osteoarthritis (KOA) have an elevated risk for falls and fall injuries, which may be in part due to poor dynamic postural control during locomotion. Tai chi exercise has been shown to reduce fall risks in the ageing population and is recommended as one of the non-pharmocological therapies for people with KOA. However, neuromuscular mechanisms underlying the benefits of tai chi for persons with KOA are not clearly understood. Postural control deficits in performing a primary motor task may be more pronounced when required to simultaneously attend to a cognitive task. This single-blind, parallel design randomised controlled trial (RCT) aims to evaluate the effects of a 12-week tai chi programme versus balance and postural control training on neuromechanical characteristics during dual-task stair negotiation. Sixty-six participants with KOA will be randomised into either tai chi or balance and postural control training, each at 60 min per session, twice weekly for 12 weeks. Assessed at baseline and 12 weeks (ie, postintervention), the primary outcomes are attention cost and dynamic postural stability during dual-task stair negotiation. Secondary outcomes include balance and proprioception, foot clearances, self-reported symptoms and function. A telephone follow-up to assess symptoms and function will be conducted at 20 weeks. The findings will help determine whether tai chi is beneficial on dynamic stability and in reducing fall risks in older adults with KOA patients in community. Ethics approval was obtained from the Ethics Committee of the Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine (#2018KY-006-1). Study findings will be disseminated through presentations at scientific conferences or publications in peer-reviewed journals. ChiCTR1800018028. [Abstract copyright: © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
Coexistence of coupled magnetic phases in epitaxial TbMnO3 films revealed by ultrafast optical spectroscopy
Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence
of coupled antiferromagnetic/ferroelectric and ferromagnetic orders in
multiferroic TbMnO3 films through their time domain signatures. Our
observations are explained by a theoretical model describing the coupling
between reservoirs with different magnetic properties. These results can guide
researchers in creating new kinds of multiferroic materials that combine
coupled ferromagnetic, antiferromagnetic and ferroelectric properties in one
compound.Comment: Accepted by Appl. Phys. let
Molecular evolution of H3N8 EIV in China, phylogenetic and structural analyses
Inst.de VirologíaFil: Miño, Samuel. Chinese Academy of Agricultural Sciences. Harbin Veterinary Research Institute. National Key Laboratory of Veterinary Biotechnology; China. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Qi, T. Chinese Academy of Agricultural Sciences. Harbin Veterinary Research Institute. National Key Laboratory of Veterinary Biotechnology; ChinaFil: Guo, W. Chinese Academy of Agricultural Sciences. Harbin Veterinary Research Institute. National Key Laboratory of Veterinary Biotechnology; ChinaFil: Wang, X. Chinese Academy of Agricultural Sciences. Harbin Veterinary Research Institute. National Key Laboratory of Veterinary Biotechnology; Chin
Generation of spatially-separated spin entanglement in a triple quantum dot system
We propose a novel method for the creation of spatially-separated spin
entanglement by means of adiabatic passage of an external gate voltage in a
triple quantum dot system.Comment: 10 pages, 6 figure
Polaronic transport induced by competing interfacial magnetic order in a LaCaMnO/BiFeO heterostructure
Using ultrafast optical spectroscopy, we show that polaronic behavior
associated with interfacial antiferromagnetic order is likely the origin of
tunable magnetotransport upon switching the ferroelectric polarity in a
LaCaMnO/BiFeO (LCMO/BFO) heterostructure. This is
revealed through the difference in dynamic spectral weight transfer between
LCMO and LCMO/BFO at low temperatures, which indicates that transport in
LCMO/BFO is polaronic in nature. This polaronic feature in LCMO/BFO decreases
in relatively high magnetic fields due to the increased spin alignment, while
no discernible change is found in the LCMO film at low temperatures. These
results thus shed new light on the intrinsic mechanisms governing
magnetoelectric coupling in this heterostructure, potentially offering a new
route to enhancing multiferroic functionality
- …