25,427 research outputs found

    Chiral-Odd and Spin-Dependent Quark Fragmentation Functions and their Applications

    Full text link
    We define a number of quark fragmentation functions for spin-0, -1/2 and -1 hadrons, and classify them according to their twist, spin and chirality. As an example of their applications, we use them to analyze semi-inclusive deep-inelastic scattering on a transversely polarized nucleon.Comment: 19 pages in Plain TeX, MIT CTP #221

    Implications of Color Gauge Symmetry For Nucleon Spin Structure

    Get PDF
    We study the chromodynamical gauge symmetry in relation to the internal spin structure of the nucleon. We show that 1) even in the helicity eigenstates the gauge-dependent spin and orbital angular momentum operators do not have gauge-independent matrix element; 2) the evolution equations for the gluon spin take very different forms in the Feynman and axial gauges, but yield the same leading behavior in the asymptotic limit; 3) the complete evolution of the gauge-dependent orbital angular momenta appears intractable in the light-cone gauge. We define a new gluon orbital angular momentum distribution Lg(x)L_g(x) which {\it is} an experimental observable and has a simple scale evolution. However, its physical interpretation makes sense only in the light-cone gauge just like the gluon helicity distribution Δg(x)\Delta g(x)y.Comment: Minor corrections are made in the tex

    Leading Chiral Contributions to the Spin Structure of the Proton

    Get PDF
    The leading chiral contributions to the quark and gluon components of the proton spin are calculated using heavy-baryon chiral perturbation theory. Similar calculations are done for the moments of the generalized parton distributions relevant to the quark and gluon angular momentum densities. These results provide useful insight about the role of pions in the spin structure of the nucleon, and can serve as a guidance for extrapolating lattice QCD calculations at large quark masses to the chiral limit.Comment: 8 pages, 2 figures; a typo in Ref. 7 correcte

    Electronic transport in a Cantor stub waveguide network

    Full text link
    We investigate theoretically, the character of electronic eigenstates and transmission properties of a one dimensional array of stubs with Cantor geometry. Within the framework of real space re-normalization group (RSRG) and transfer matrix methods we analyze the resonant transmission and extended wave-functions in a Cantor array of stubs, which lack translational order. Apart from resonant states with high transmittance we unravel a whole family of wave-functions supported by such an array clamped between two-infinite ordered leads, which have an extended character in the RSRG scheme, but, for such states the transmission coefficient across the lead-sample-lead structure decays following a power-law as the system grows in size. This feature is explained from renormalization group ideas and may lead to the possibility of trapping of electronic, optical or acoustic waves in such hierarchical geometries

    Off-Forward Parton Distributions in 1+1 Dimensional QCD

    Full text link
    We use two-dimensional QCD as a toy laboratory to study off-forward parton distributions (OFPDs) in a covariant field theory. Exact expressions (to leading order in 1/NC1/N_C) are presented for OFPDs in this model and are evaluated for some specific numerical examples. Special emphasis is put on comparing the x>ζx>\zeta and x<ζx<\zeta regimes as well as on analyzing the implications for the light-cone description of form factors.Comment: Revtex, 6 pages, 4 figure

    Reactor Fuel Fraction Information on the Antineutrino Anomaly

    Get PDF
    We analyzed the evolution data of the Daya Bay reactor neutrino experiment in terms of short-baseline active-sterile neutrino oscillations taking into account the theoretical uncertainties of the reactor antineutrino fluxes. We found that oscillations are disfavored at 2.6σ2.6\sigma with respect to a suppression of the 235U^{235}\text{U} reactor antineutrino flux and at 2.5σ2.5\sigma with respect to variations of the 235U^{235}\text{U} and 239Pu^{239}\text{Pu} fluxes. On the other hand, the analysis of the rates of the short-baseline reactor neutrino experiments favor active-sterile neutrino oscillations and disfavor the suppression of the 235U^{235}\text{U} flux at 3.1σ3.1\sigma and variations of the 235U^{235}\text{U} and 239Pu^{239}\text{Pu} fluxes at 2.8σ2.8\sigma. We also found that both the Daya Bay evolution data and the global rate data are well-fitted with composite hypotheses including variations of the 235U^{235}\text{U} or 239Pu^{239}\text{Pu} fluxes in addition to active-sterile neutrino oscillations. A combined analysis of the Daya Bay evolution data and the global rate data shows a slight preference for oscillations with respect to variations of the 235U^{235}\text{U} and 239Pu^{239}\text{Pu} fluxes. However, the best fits of the combined data are given by the composite models, with a preference for the model with an enhancement of the 239Pu^{239}\text{Pu} flux and relatively large oscillations.Comment: 9 page

    Positivity Constraints for Spin-Dependent Parton Distributions

    Full text link
    We derive new positivity constraints on the spin-dependent structure functions of the nucleon. These model independent results reduce conside\-rably their domain of allowed values, in particular for the chiral-odd parton distribution h1(x)h_1 (x).Comment: 8 pages,CPT-94/P.3059,LaTex,3 fig available on cpt.univ-mrs.fr directory pub/preprints/94/fundamental-interactions/94-P.305

    Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    Full text link
    The third moment d2d_2 of the twist-3 part of the nucleon spin structure function g2g_2 is generalized to arbitrary momentum transfer Q2Q^2 and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order O(p4){\mathcal{O}}(p^4) and in a unitary isobar model (MAID). We show how to link d2d_2 as well as higher moments of the nucleon spin structure functions g1g_1 and g2g_2 to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f2f_2 which appears in the 1/Q21/Q^2 suppressed term in the twist expansion of the spin structure function g1g_1 for proton and neutron.Comment: 30 pages, 7 figure

    Quark fragmentation functions in a diquark model for proton and Λ\Lambda hyperon production

    Full text link
    A simple quark-diquark model for nucleon and Λ\Lambda structure is used to calculate leading twist light-cone fragmentation functions for a quark to inclusively decay into P or Λ\Lambda. The parameters of the model are determined by fitting to the known deep-inelastic structure functions of the nucleon. When evolved from the initial to the final Q2Q^2 scale, the calculated fragmentation functions are in remarkable agreement (for z>0.4z>0.4 ) with those extracted from partially inclusive epep and e+ee^+ e^- experiments at high energies. Predictions are made, using no additional parameters, for longitudinally and transversely polarized quarks to fragment into p or Λ\Lambda.Comment: 15 pages, latex, figures may be obtained by writing to hafsa%png-qau%[email protected]

    Helicity-Flip Off-Foward Parton Distributions of the Nucleon

    Get PDF
    We identify quark and gluon helicity-flip distributions defined between nucleon states of unequal momenta. The evolution of these distributions with change of renormalization scale is calculated in the leading-logarithmic approximation. The helicity-flip gluon distributions do not mix with any quark distribution and are thus a unique signature of gluons in the nucleon. Their contribution to the generalized virtual Compton process is obtained both in the form of a factorization theorem and an operator product expansion. In deeply virtual Compton scattering, they can be probed through distinct angular dependence of the cross section.Comment: a few corrections made, references change
    corecore