19,749 research outputs found

    Fermi resonance-algebraic model for molecular vibrational spectra

    Full text link
    A Fermi resonance-algebraic model is proposed for molecular vibrations, where a U(2) algebra is used for describing the vibrations of each bond, and Fermi resonances between stretching and bending modes are taken into account. The model for a bent molecule XY_2 and a molecule XY_3 is successfully applied to fit the recently observed vibrational spectrum of the water molecule and arsine (AsH_3), respectively, and results are compared with those of other models. Calculations show that algebraic approaches can be used as an effective method for describing molecular vibrations with small standard deviations

    FHL2 regulates hematopoietic stem cell functions under stress conditions.

    Get PDF
    FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated downregulation of cyclin-dependent kinase-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under the control of a tissue-specific promoter in hematopoietic cells and it is downregulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that downregulation of FHL2 frequently occurs in myelodysplastic syndrome and acute myeloid leukemia patients, raising a possibility that FHL2 downregulation has a role in the pathogenesis of myeloid malignancies

    Priority-driven self-optimizing power control scheme for interlinking converters of hybrid AC/DC microgrid clusters in decentralized manner

    Get PDF
    Hybrid AC/DC microgrid clusters are key building blocks of smart grid to support sustainable and resilient urban power systems. In microgrid clusters, the subgrid load-priorities and power quality requirements for different areas vary significantly. To realize optimal power exchanges among microgrid clusters, this paper proposes a decentralized self-optimizing power control scheme for interlinking converters (ILC) of hybrid microgrid clusters. A priority-driven optimal power exchange model of ILCs is built considering the priorities and capacities in subgrids. The optimization objective is to minimize the total DC-voltage/AC-frequency state deviations of subgrids. To realize the decentralized power flow control, an optimal-oriented quasi-droop control strategy of ILCs is introduced to not only achieve a flexible self-optimizing power flow management, but also provide an ancillary function of voltage support. Consequently, as each of ILCs only monitors the local AC-side frequency and DC-side voltage signals, the whole optimal power control of the wide-area microgrid clusters is achieved in a decentralized manner without any communication link. Thus, the proposed control algorithm has the features of decreased cost, increased scalability, reduced geographic restrictions and high resilience in terms of communication faults. Finally, the proposed method is validated by case studies with four interconnected microgrids through hardware-in-loop tests

    Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells

    Get PDF
    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells

    Accurate evaluation of the Green's function of disordered graphenes

    Full text link
    An accurate simulation of Green's function and self-energy function of non-interacting electrons in disordered graphenes are performed. Fundamental physical quantities such as the elastic relaxation time {\tau}e, the phase velocity vp, and the group velocity vg are evaluated. New features around the Dirac point are revealed, showing hints that multi-scattering induced hybridization of Bloch states plays an important role in the vicinity of the Dirac point.Comment: 4 figure

    Note on the Algebra of Screening Currents for the Quantum Deformed W-Algebra

    Full text link
    With slight modifications in the zero modes contributions, the positive and negative screening currents for the quantum deformed W-algebra W_{q,p}(g) can be put together to form a single algebra which can be regarded as an elliptic deformation of the universal enveloping algebra of \hat{g}, where g is any classical simply-laced Lie algebra.Comment: LaTeX file, 9 pages. Errors in Serre relation corrected. Two references to Awata,H. et al adde

    Double-peaked Narrow Emission-line Galaxies in LAMOST Survey

    Full text link
    We outline a full-scale search for galaxies exhibiting double-peaked profiles of promi- nent narrow emission lines, motivated by the prospect of finding objects related to merging galaxies, and even dual active galactic nuclei candidates as by-product, from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) Data Re- lease 4. We assemble a large sample of 325 candidates with double-peaked or strong asymmetric narrow emission lines, with 33 objects therein appearing optically resolved dual-cored structures, close companions or signs of recent interaction on the Sloan Dig- ital Sky Survey images. A candidate from LAMOST (J074810.95+281349.2) is also stressed here based on the kinematic and spatial decompositions of the double-peaked narrow emission line target, with analysis from the cross-referenced Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey datacube. MaNGA en- ables us to constrain the origin of double peaks for these sources, and with the IFU data we infer that the most promising origin of double-peaked profiles for LAMOST J074810.95+281349.2 is the `Rotation Dominated + Disturbance' structure.Comment: 13 pages, 9 figures, accepted by MNRA

    Capture and sorting of multiple cells by polarization-controlled three-beam interference

    Get PDF
    For the capture and sorting of multiple cells, a sensitive and highly efficient polarization-controlled three-beam interference set-up has been developed. With the theory of superposition of three beams, simulations on the influence of polarization angle upon the intensity distribution and the laser gradient force change with different polarization angles have been carried out. By controlling the polarization angle of the beams, various intensity distributions and different sizes of dots are obtained. We have experimentally observed multiple optical tweezers and the sorting of cells with different polarization angles, which are in accordance with the theoretical analysis. The experimental results have shown that the polarization angle affects the shapes and feature sizes of the interference patterns and the trapping force

    Effect of Nanosilica on the Sulfate Attack Resistivity of Cement Mortar

    Get PDF
    The effect of nanosilica on the sulfate attack resistivity of cement mortar was investigated through study on the mechanical property evolution and the length change of the cement mortar under 5 wt.% sodium sulfate for 6 months. Meanwhile, the effects were compared with those of fly ash-replacement mortar. Results showed that by taking the advantages of nanosilica and fly ash in improving the property of cement mortar at early and later ages, the sulfate attack resistance of cement mortar can be enhanced in mechanical property increase and expansion reduction. Further, it implies that a combination of both pozzolans could enhance the sulfate attack resistivity of cement-based materials
    • …
    corecore