1,955 research outputs found

    An efficient error resilience scheme based on wyner-ziv coding for region-of-Interest protection of wavelet based video transmission

    Get PDF
    In this paper, we propose a bandwidth efficient error resilience scheme for wavelet based video transmission over wireless channel by introducing an additional Wyner-Ziv (WZ) stream to protect region of interest (ROI) in a frame. In the proposed architecture, the main video stream is compressed by a generic wavelet domain coding structure and passed through the error prone channel without any protection. Meanwhile, the predefined ROI area related wavelet coefficients obtained after an integer wavelet transform will be specially protected by WZ codec in an additional channel during transmission. At the decoder side, the error-prone ROI related wavelet coefficients will be used as side information to help decoding the WZ stream. Different size of WZ bit streams can be applied in order to meet different bandwidth condition and different requirement of end users. The simulation results clearly revealed that the proposed scheme has distinct advantages in saving bandwidth comparing with fully applied FEC algorithm to whole video stream and in the meantime offer the robust transmission over error prone channel for certain video applications

    An efficient error resilience scheme based on Wyner-Ziv coding for region-of-interest protection of wavelet based video transmission

    Get PDF
    In this paper, we propose a bandwidth efficient error resilience scheme for wavelet based video transmission over wireless channel by introducing an additional Wyner-Ziv (WZ) stream to protect region of interest (ROI) in a frame. In the proposed architecture, the main video stream is compressed by a generic wavelet domain coding structure and passed through the error prone channel without any protection. Meanwhile, the predefined ROI area related wavelet coefficients obtained after an integer wavelet transform will be specially protected by WZ codec in an additional channel during transmission. At the decoder side, the error-prone ROI related wavelet coefficients will be used as side information to help decoding the WZ stream. Different size of WZ bit streams can be applied in order to meet different bandwidth condition and different requirement of end users. The simulation results clearly revealed that the proposed scheme has distinct advantages in saving bandwidth comparing with fully applied FEC algorithm to whole video stream and in the meantime offer the robust transmission over error prone channel for certain video applications

    Distributed video coding in wireless multimedia sensor network for multimedia broadcasting

    Get PDF
    Recently the development of Distributed Video Coding (DVC) has provided the promising theory support to realize the infrastructure of Wireless Multimedia Sensor Network (WMSN), which composed of autonomous hardware for capturing and transmission of quality audio-visual content. The implementation of DVC in WMSN can better solve the problem of energy constraint of the sensor nodes due to the benefit of lower computational encoder in DVC. In this paper, a practical DVC scheme, pixel-domain Wyner-Ziv(PDWZ) video coding, with slice structure and adaptive rate selection(ARS) is proposed to solve the certain problems when applying DVC into WMSN. Firstly, the proposed slice structure in PDWZ has extended the feasibility of PDWZ to work with any interleaver size used in Slepian-wolf turbo codec for heterogeneous applications. Meanwhile, based on the slice structure, an adaptive code rate selection has been proposed aiming at reduce the system delay occurred in feedback request. The simulation results clearly showed the enhancement in R-D performance and perceptual quality. It also can be observed that system delay caused by frequent feedback is greatly reduced, which gives a promising support for WMSN with low latency and facilitates the QoS management

    Monitoring wound healing of elastic cartilage using multiphoton microscopy

    Get PDF
    SummaryObjectiveTo demonstrate the ability of multiphoton microscopy (MPM) for monitoring wound healing of elastic cartilage.MethodIn a rabbit ear model, four cartilage specimen groups at 1-day, 1-, 4-, 20-week healing time points as well as a normal elastic cartilage were examined with MPM without using labeling agents. MPM images at wound margins were obtained from specimens at different healing stages, compared with the Hematoxylin and Eosin (H&E) stained images. Image analysis was performed to characterize the collagen morphology for quantifying the wound healing progression of elastic cartilage.ResultsMPM provided high-resolution images of elastic cartilage at varying depths. Comparisons of the images of specimens at different healing stages show obvious cell growth and matrix deposition. The results are consistent with the histological results. Moreover, quantitative analysis results show significant alteration in the collagen cavity size or collagen orientation index during wound healing of elastic cartilage, indicating the possibility to act as indicators for monitoring wound healing.ConclusionOur results suggested that MPM has the ability to monitor the wound healing progression of elastic cartilage, based on the visualization of cell growth and proliferation and quantitative characterization of collagen morphology during wound healing

    The Experimentation System Design and Experimental Study of the Air-Conditioning by Desiccant Type Using Solar Energy

    Get PDF
    Using a special solar air heater to gain heat power for regenerating an adsorption desiccant wheel made by composite silica gel, a desiccant air-conditioning experimentation system was designed and manufactured. Combining the advantage of measure and control by “PLC” and the software of “Kingview”, the whole year's operating results of this system was tested and analysed. The results indicate this system can keep the indoor air temperature range at 26±2°C and the relative humidity range being 50-70% under the low electricity cost on the whole year in the south of China region when the special solar air heater can offer flux air heating up to 60°C. In this paper some ideas are offered in order to facilitate the availability for air-conditioning using low grade energy, for example, solar energy and surplus or waste heat energy in the industrial process
    corecore