86,073 research outputs found

    Robust H∞ filtering for time-delay systems with probabilistic sensor faults

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, a new robust H∞ filtering problem is investigated for a class of time-varying nonlinear system with norm-bounded parameter uncertainties, bounded state delay, sector-bounded nonlinearity and probabilistic sensor gain faults. The probabilistic sensor reductions are modeled by using a random variable that obeys a specific distribution in a known interval [alpha,beta], which accounts for the following two phenomenon: 1) signal stochastic attenuation in unreliable analog channel and 2) random sensor gain reduction in severe environment. The main task is to design a robust H∞ filter such that, for all possible uncertain measurements, system parameter uncertainties, nonlinearity as well as time-varying delays, the filtering error dynamics is asymptotically mean-square stable with a prescribed H∞ performance level. A sufficient condition for the existence of such a filter is presented in terms of the feasibility of a certain linear matrix inequality (LMI). A numerical example is introduced to illustrate the effectiveness and applicability of the proposed methodology

    Bubble, Critical Zone and the Crash of Royal Ahold

    Full text link
    Our analysis of financial data, in terms of super-exponential growth, suggests that the seed of the 2002/03 crisis of the Dutch supermarket giant AHOLD was planted in 1996. It became quite visible in 1999 when the post-bubble destabilization regime was well-developed and acted as the precursor of an inevitable collapse fueled by raising expectations of investors to maintain strong herding pressures. We have adapted Weidlich's theory of opinion formation to describe the formation of buy or sell decisions among investors, based on a competition between the mechanisms of herding and of personal opinion opposing the herd. Among four typical patterns of stock price evolution, we have identified a ``critical zone'' in the model characterized by a strong sensitivity of the price trajectory on the herding and personal inclination parameters. The critical zone describes the maturation of a systemic instability forewarning of an inevitable crash. Classification and recognition of the spontaneous emergence of patterns of stock market evolution based on Weidlich's theory of complex systems, and in particular our discovery of the post-bubble destabilization regime which acts as a precursor to a subsequent crash or antibubble, not only presents the possibility of developing early warning signals but also suggests to top management ways of dealing with the coming crisis.Comment: 37 pages including 13 figure

    Robust H∞ filtering for networked systems with multiple state delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Taylor & Francis Ltd.In this paper, a new robust H∞ filter design problem is studied for a class of networked systems with multiple state-delays. Two kinds of incomplete measurements, namely, measurements with random delays and measurements with stochastic missing phenomenon, are simultaneously considered. Such incomplete measurements are induced by the limited bandwidth of communication networks, and are modelled as a linear function of a certain set of indicator functions that depend on the same stochastic variable. Attention is focused on the analysis and design problems of a full-order robust H∞ filter such that, for all admissible parameter uncertainties and all possible incomplete measurements, the filtering error dynamics is exponentially mean-square stable and a prescribed H∞ attenuation level is guaranteed. Some recently reported methodologies, such as delay-dependent and parameter-dependent stability analysis approaches, are employed to obtain less conservative results. Sufficient conditions, which are dependent on the occurrence probability of both the random sensor delay and missing measurement, are established for the existence of the desired filters in terms of certain linear matrix inequalities (LMIs). When these LMIs are feasible, the explicit expression of the desired filter can also be characterized. Finally, numerical examples are given to illustrate the effectiveness and applicability of the proposed design method.This work was supported by the National Natural Science Foundation of China under Grant 60574084, the National 863 Project of China under Grant 2006AA04Z428, and the National 973 Program of China under Grant 2002CB312200

    The Gentlest Ascent Dynamics

    Full text link
    Dynamical systems that describe the escape from the basins of attraction of stable invariant sets are presented and analyzed. It is shown that the stable fixed points of such dynamical systems are the index-1 saddle points. Generalizations to high index saddle points are discussed. Both gradient and non-gradient systems are considered. Preliminary results on the nature of the dynamical behavior are presented

    Graded reflection equation algebras and integrable Kondo impurities in the one-dimensional t-J model

    Full text link
    Integrable Kondo impurities in two cases of the one-dimensional tJt-J model are studied by means of the boundary Z2{\bf Z}_2-graded quantum inverse scattering method. The boundary KK matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.Comment: 14 pages, RevTe

    Localization of Macroscopic Object Induced by the Factorization of Internal Adiabatic Motion

    Full text link
    To account for the phenomenon of quantum decoherence of a macroscopic object, such as the localization and disappearance of interference, we invoke the adiabatic quantum entanglement between its collective states(such as that of the center-of-mass (C.M)) and its inner states based on our recent investigation. Under the adiabatic limit that motion of C.M dose not excite the transition of inner states, it is shown that the wave function of the macroscopic object can be written as an entangled state with correlation between adiabatic inner states and quasi-classical motion configurations of the C.M. Since the adiabatic inner states are factorized with respect to each parts composing the macroscopic object, this adiabatic separation can induce the quantum decoherence. This observation thus provides us with a possible solution to the Schroedinger cat paradoxComment: Revtex4,23 pages,1figur
    corecore