31,900 research outputs found
Antiviral treatment alters the frequency of activating and inhibitory receptor-expressing natural killer cells in chronic Hepatitis B virus infected patients
Natural killer (NK) cells play a critical role in innate antiviral immunity, but little is known about the impact of antiviral therapy on the frequency of NK cell subsets. To this aim, we performed this longitudinal study to examine the dynamic changes of the frequency of different subsets of NK cells in CHB patients after initiation of tenofovir or adefovir therapy. We found that NK cell numbers and subset distribution differ between CHB patients and normal subjects; furthermore, the association was found between ALT level and CD158b+ NK cell in HBV patients. In tenofovir group, the frequency of NK cells increased during the treatment accompanied by downregulated expression of NKG2A and KIR2DL3. In adefovir group, NK cell numbers did not differ during the treatment, but also accompanied by downregulated expression of NKG2A and KIR2DL3. Our results demonstrate that treatment with tenofovir leads to viral load reduction, and correlated with NK cell frequencies in peripheral blood of chronic hepatitis B virus infection. In addition, treatments with both tenofovir and adefovir in chronic HBV infected patients induce a decrease of the frequency of inhibitory receptor+ NK cells, which may account for the partial restoration of the function of NK cells in peripheral blood following treatment
Superconducting properties of nanocrystalline MgB thin films made by an in situ annealing process
We have studied the structural and superconducting properties of MgB thin
films made by pulsed laser deposition followed by in situ annealing. The
cross-sectional transmission electron microscopy reveals a nanocrystalline
mixture of textured MgO and MgB with very small grain sizes. A
zero-resistance transition temperature () of 34 K and a zero-field
critical current density () of A/cm were obtained.
The irreversibility field was 8 T at low temperatures, although severe
pinning instability was observed. These bulk-like superconducting properties
show that the in situ deposition process can be a viable candidate for MgB
Josephson junction technologies
Giant Planar Hall Effect in Epitaxial (Ga,Mn)As Devices
Large Hall resistance jumps are observed in microdevices patterned from
epitaxial (Ga,Mn)As layers when subjected to a swept, in-plane magnetic field.
This giant planar Hall effect is four orders of magnitude greater than
previously observed in metallic ferromagnets. This enables extremely sensitive
measurements of the angle-dependent magnetic properties of (Ga,Mn)As. The
magnetic anisotropy fields deduced from these measurements are compared with
theoretical predictions.Comment: 3 figure
Magnetic field processing to enhance critical current densities of MgB2 superconductors
Magnetic field of up to 12 T was applied during the sintering process of pure
MgB2 and carbon nanotube (CNT) doped MgB2 wires. We have demonstrated that
magnetic field processing results in grain refinement, homogeneity and
significant enhancement in Jc(H) and Hirr. The Jc of pure MgB2 wire increased
by up to a factor of 3 to 4 and CNT doped MgB2 by up to an order of magnitude
in high field region respectively, compared to that of the non-field processed
samples. Hirr for CNT doped sample reached 7.7 T at 20 K. Magnetic field
processing reduces the resistivity in CNT doped MgB2, straightens the entangled
CNT and improves the adherence between CNTs and MgB2 matrix. No crystalline
alignment of MgB2 was observed. This method can be easily scalable for a
continuous production and represents a new milestone in the development of MgB2
superconductors and related systems
- …
