36,291 research outputs found

    A connection-level call admission control using genetic algorithm for MultiClass multimedia services in wireless networks

    Get PDF
    Call admission control in a wireless cell in a personal communication system (PCS) can be modeled as an M/M/C/C queuing system with m classes of users. Semi-Markov Decision Process (SMDP) can be used to optimize channel utilization with upper bounds on handoff blocking probabilities as Quality of Service constraints. However, this method is too time-consuming and therefore it fails when state space and action space are large. In this paper, we apply a genetic algorithm approach to address the situation when the SMDP approach fails. We code call admission control decisions as binary strings, where a value of “1” in the position i (i=1,
m) of a decision string stands for the decision of accepting a call in class-i; a value of “0” in the position i of the decision string stands for the decision of rejecting a call in class-i. The coded binary strings are feed into the genetic algorithm, and the resulting binary strings are founded to be near optimal call admission control decisions. Simulation results from the genetic algorithm are compared with the optimal solutions obtained from linear programming for the SMDP approach. The results reveal that the genetic algorithm approximates the optimal approach very well with less complexity

    On the nature of the lightest scalar resonances

    Full text link
    We briefly review the recent progresses in the new unitarization approach being developed by us. Especially we discuss the large NcN_c ππ\pi\pi scatterings by making use of the partial wave SS matrix parametrization form. We find that the σ\sigma pole may move to the negative real axis on the second sheet of the complex ss plane, therefore it raises the interesting question that this `σ\sigma' pole may be related to the σ\sigma in the linear σ\sigma model.Comment: Talk presented by Zheng at ``Quark Confinement and Hadron Spectroscopy VI'', 21--25 Sept. 2004, Cagliari, Italy. 3 pages with 2 figure

    Protein folding in hydrophobic-polar lattice model: a flexible ant colony optimization approach

    Get PDF
    This paper proposes a flexible ant colony (FAC) algorithm for solving protein folding problems based on the hydrophobic-polar square lattice model. Collaborations of novel pheromone and heuristic strategies in the proposed algorithm make it more effective in predicting structures of proteins compared with other state-of-the-art algorithms

    Fermions in gravity and gauge backgrounds on a brane world

    Full text link
    We solve the fermionic zero modes in gravity and gauge backgrounds on a brane involving a warped geometry, and study the localization of spin 1/2 fermionic field on the brane world. The result is that there exist massless spin 1/2 fermions which can be localized on the bulk with the exponentially decreasing warp factor if including U(1) gauge background. Two special cases of gauge backgrounds on the extra dimensional manifold are discussed.Comment: 11 pages, no figures, final versio

    Performance of Photosensors in the PandaX-I Experiment

    Full text link
    We report the long term performance of the photosensors, 143 one-inch R8520-406 and 37 three-inch R11410-MOD photomultipliers from Hamamatsu, in the first phase of the PandaX dual-phase xenon dark matter experiment. This is the first time that a significant number of R11410 photomultiplier tubes were operated in liquid xenon for an extended period, providing important guidance to the future large xenon-based dark matter experiments.Comment: v3 as accepted by JINST with modifications based on reviewers' comment

    Local spin polarisation of electrons in Rashba semiconductor nanowires: effects of the bound state

    Full text link
    The local spin polarisation (LSP) of electrons in two typical semiconductor nanowires under the modulation of Rashba spin-orbit interaction (SOI) is investigated theoretically. The influence of both the SOI- and structure-induced bound states on the LSP is taken into account via the spin-resolved lattice Green function method. It is discovered that high spin-density islands with alternative signs of polarisation are formed inside the nanowires due to the interaction between the bound states and the Rashba effective magnetic field. Further study shows that the spin-density islands caused by the structure-induced bound state exhibit a strong robustness against disorder. These findings may provide an efficient way to create local magnetic moments and store information in semiconductors.Comment: 8 pages, 3 figure
    • 

    corecore