27 research outputs found

    Seed development in Phaseolus vulgaris L., Populus nigra L., and Ranunculus sceleratus L. with special reference to the microtubular cytoskeleton

    Get PDF
    In this thesis, seed development is investigated in celery-leafed buttercup ( Ranunculus sceleratus L.), bean ( Phaseolus vulgaris L.) and poplar ( Populus nigra L.). Developing embryos, endosperms and seed coats are investigated. The comparative study of seed morphology, anatomy and development gives insight into the different types of seed differentiation in relation to its function. A main goal of the thesis is to study the role of the microtubular cytoskeleton in plant reproduction processes. Special attention has been paid to configurations of microtubular cytoskeleton during cellularization of the endosperm. Functions of the microtubular cytoskeleton in relation to the particular organizations of microtubular populations have been analyzed based on the studies of the overall developmental patterning of tissues and organs. Cytomorphogenesis during seed development is investigated at histological and cytological levels using combined techniques of conventional light microscopy, scanning and transmission electron microscopy, and immunofluorescence light microscopy

    Temporal and spatial expression of MADS box genes, FBP7 and FBP11, during initiation and early development of ovules in wild type and mutant Petunia hybrida

    No full text
    The temporal and spatial distribution of the Petunia Floral Binding Proteins 7 and 11 (FBP7/11) were determined immunocytochemically during ovule initiation and development. In wild type plants, FBP7/11 were first detected in the placenta before ovule primordia were formed. At ovule primordium stage, FBP7/11 levels increased in the placenta and appeared in ovule primordia at the sites where integument primordia developed. At the megagametogenesis stage, FBP7/11 were present at high levels in the placenta, funicle and integument, but not in the nucellus or gametophyte. Transgenics with cosuppression of FBP7/11 formed normal ovule primordia on the placenta from which both normal ovules and carpel-like structures developed. The amount of FBP7/11 was low in the ovules and undetectable in the carpel-like structures. Plants with ectopic expression of FBP7/11 developed normal ovules on the placenta and, in addition, ovule- and carpel-like structures on sepals. Placental and sepal ovules showed the same labeling pattern as observed in wild type ovules. FBP7/11 levels were, however, low or undetectable in the carpel-like structures. The results indicate that FBP7/11 only have indirect roles in ovule primordium initiation. However, at least small quantities are needed for proper ovule differentiation. Thus, the amount of FBP7/11 is related to the type of development after primordium formation, i.e., towards the formation of real ovules or carpel-like structures

    Temporal and spatial expression of MADS box genes, FBP7 and FBP11, during initiation and early development of ovules in wild type and mutant Petunia hybrida

    No full text
    The temporal and spatial distribution of the Petunia Floral Binding Proteins 7 and 11 (FBP7/11) were determined immunocytochemically during ovule initiation and development. In wild type plants, FBP7/11 were first detected in the placenta before ovule primordia were formed. At ovule primordium stage, FBP7/11 levels increased in the placenta and appeared in ovule primordia at the sites where integument primordia developed. At the megagametogenesis stage, FBP7/11 were present at high levels in the placenta, funicle and integument, but not in the nucellus or gametophyte. Transgenics with cosuppression of FBP7/11 formed normal ovule primordia on the placenta from which both normal ovules and carpel-like structures developed. The amount of FBP7/11 was low in the ovules and undetectable in the carpel-like structures. Plants with ectopic expression of FBP7/11 developed normal ovules on the placenta and, in addition, ovule- and carpel-like structures on sepals. Placental and sepal ovules showed the same labeling pattern as observed in wild type ovules. FBP7/11 levels were, however, low or undetectable in the carpel-like structures. The results indicate that FBP7/11 only have indirect roles in ovule primordium initiation. However, at least small quantities are needed for proper ovule differentiation. Thus, the amount of FBP7/11 is related to the type of development after primordium formation, i.e., towards the formation of real ovules or carpel-like structures
    corecore