709 research outputs found
Localization of fermionic fields on braneworlds with bulk tachyon matter
Recently, Pal and Skar in [arXiv:hep-th/0701266] proposed a mechanism to
arise the warped braneworld models from bulk tachyon matter, which are endowed
with a thin brane and a thick brane. In this framework, we investigate
localization of fermionic fields on these branes. As in the 1/2 spin case, the
field can be localized on both the thin and thick branes with inclusion of
scalar background. In the 3/2 spin extension, the general supergravity action
coupled to chiral supermultiplets is considered to produce the localization on
both the branes as a result.Comment: 9 pages, no figure
decays in the pQCD approach
We calculate the CP averaged branching ratios and CP-violating asymmetries
for and
decays in the perturbative QCD (pQCD) approach here. The pQCD predictions for
the CP-averaged branching ratios are Br(B_s^0 \to \eta \eta) = \left
(14.2^{+18.0}_{-7.5}) \times 10^{-6}, Br(B_s^0 \to \eta \eta^\prime)= \left
(12.4 ^{+18.2}_{-7.0}) \times 10^{-6}, and Br(B_s^0 \to \eta^{\prime}
\eta^{\prime}) = \left (9.2^{+15.3}_{-4.9}) \times 10^{-6}, which agree well
with those obtained by employing the QCD factorization approach and also be
consistent with available experimental upper limits. The gluonic contributions
are small in size: less than 7% for and
decays, and around 18% for decay. The CP-violating
asymmetries for three decays are very small: less than 3% in magnitude.Comment: 11 pages, 1 ps figure, Revte
Detecting Extra Dimension by Helium-like Ions
Considering that gravitational force might deviate from Newton's
inverse-square law and become much stronger in small scale, we present a method
to detect the possible existence of extra dimensions in the ADD model. By
making use of an effective variational wave function, we obtain the
nonrelativistic ground energy of a helium atom and its isoelectronic sequence.
Based on these results, we calculate gravity correction of the ADD model. Our
calculation may provide a rough estimation about the magnitude of the
corresponding frequencies which could be measured in later experiments.Comment: 8 pages, no figures, accepted by Mod. Phys. Lett.
Entanglement and quantum phase transition in quantum mixed spin chains
The ground entanglement and thermal entanglement in quantum mixed spin chains
consisting of two integer spins 1 and two half integer spins 1/2 arrayed as
in a unit cell with antiferromagnetic nearest-neighbor
couplings () between the spins of equal (different) magnitudes, are
investigated by adopting the log-negativity. The ground entanglement transition
found here is closely related with the valence bond state transition, and the
thermal entanglement near the critical point is calculated and shown that two
distinct behaviors exist in the nearest neighbor same kind of spins and
different kind of spins, respectively. The potential application of our results
on the quantum information processing is also discussed.Comment: 5 pages, 4 figures, RevTex4, A minor correction is added into the
figure captio
Mesenchymal stem cells with overexpression of midkine enhance cell survival and attenuate cardiac dysfunction in a rat model of myocardial infarction
Introduction. Elevated midkine (MK) expression may contribute to ventricular remodeling and ameliorate cardiac dysfunction after myocardial infarction (MI). Ex vivo modification of signaling mechanisms in mesenchymal stem cells (MSCs) with MK overexpression may improve the efficacy of cell-based therapy. This study sought to assess the safety and efficacy of MSCs with MK overexpression transplantation in a rat model of MI. Methods. A pLenO-DCE vector lentivirus encoding MK was constructed and infected in MSCs. MSC migration activity and cytoprotection was examined in hypoxia-induced H9C2 cells using transwell insert in vitro. Rats were randomized into five groups: sham, MI plus injection of phosphate buffered saline (PBS), MSCs, MSCs-green fluorescent protein (MSCs-GFP) and MSCs-MK, respectively. Survival rates were compared among groups using log-rank test and left ventricular function was measured by echocardiography at baseline, 4, 8 and 12 weeks. Results: Overexpression of MK partially prevented hypoxia-induced MSC apoptosis and exerted MSC cytoprotection to anoxia induced H9C2 cells. The underlying mechanisms may be associated with the increased mRNA and protein levels of vascular endothelial growth factor (VEGF), transformation growth factor-β (TGF-β), insulin-like growth factor 1 (IGF-1) and stromal cell-derived factor 1 (SDF-1a) in MSCs-MK compared with isolated MSCs and MSCs-GFP. Consistent with the qPCR results, the culture supernatant of MSCs-MK had more SDF-1a (9.23 ng/ml), VEGF (8.34 ng/ml) and TGF-β1 (17.88 ng/ml) expression. In vivo, a greater proportion of cell survival was observed in the MSCs-MK group than in the MSCs-GFP group. Moreover, MSCs-MK administration was related to a significant improvement of cardiac function compared with other control groups at 12 weeks. Conclusions: Therapies employing MSCs with MK overexpression may represent an effective treatment for improving cardiac dysfunction and survival rate after MI
Constitutional Flavonoids Derived from Epimedium Dose-Dependently Reduce Incidence of Steroid-Associated Osteonecrosis Not via Direct Action by Themselves on Potential Cellular Targets
Intravascular-thrombosis and extravascular-lipid-deposit are the two key pathogenic events considered to interrupt intraosseous blood supply during development of steroid-associated osteonecrosis (ON). However, there are no clinically employed agents capable of simultaneously targeting these two key pathogenic events. The present experimental study demonstrated that constitutional flavonoid glycosides derived from herb Epimedium (EF, composed of seven flavonoid compounds with common stem nuclear) exerted dose-dependent effect on inhibition of both thrombosis and lipid-deposition and accordingly reducing incidence of steroid-associated ON in rabbits, which was not via direct action by themselves rather by their common metabolite on potential cellular targets involved in the two pathogenic pathways. The underlying mechanism could be explained by counteracting endothelium injury and excessive adipogenesis. These findings encourage designing clinical trials to investigate potential of EF in prevention of steroid-associated ON
Formation of Nanopits in Si Capping Layers on SiGe Quantum Dots
In-situ annealing at a high temperature of 640°C was performed for a low temperature grown Si capping layer, which was grown at 300°C on SiGe self-assembled quantum dots with a thickness of 50 nm. Square nanopits, with a depth of about 8 nm and boundaries along 〈110〉, are formed in the Si capping layer after annealing. Cross-sectional transmission electron microscopy observation shows that each nanopit is located right over one dot with one to one correspondence. The detailed migration of Si atoms for the nanopit formation is revealed by in-situ annealing at a low temperature of 540°C. The final well-defined profiles of the nanopits indicate that both strain energy and surface energy play roles during the nanopit formation, and the nanopits are stable at 640°C. A subsequent growth of Ge on the nanopit-patterned surface results in the formation of SiGe quantum dot molecules around the nanopits
- …