2,436 research outputs found

    Ultrafast fluorescent decay induced by metal-mediated dipole-dipole interaction in two-dimensional molecular aggregates

    Full text link
    Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the single or colloidal dye molecules or quantum dots in most previous research. In this paper, we verify for the first time that when a 2DMA is placed at a nanometric distance from a metallic substrate, the strong and coherent interaction between the dipoles inside the 2DMA dominates its fluorescent decay at picosecond timescale. Our streak-camera lifetime measurement and interacting lattice-dipole calculation reveal that the metal-mediated dipole-dipole interaction shortens the fluorescent lifetime to about one half and increases the energy dissipation rate by ten times than expected from the noninteracting single-dipole picture. Our finding can enrich our understanding of nanoscale energy transfer in molecular excitonic systems and may designate a new direction for developing fast and efficient optoelectronic devices.Comment: 9 pages, 6 figure

    Relative entropy of entanglement of a kind of two qubit entangled states

    Full text link
    We in this paper strictly prove that some block diagonalizable two qubit entangled state with six none zero elements reaches its quantum relative entropy entanglement by the a separable state having the same matrix structure. The entangled state comprises local filtering result state as a special case.Comment: 5 page

    Bs0η()η()B_s^0 \to \eta^{(\prime)} \eta^{(\prime)} decays in the pQCD approach

    Full text link
    We calculate the CP averaged branching ratios and CP-violating asymmetries for Bs0ηη,ηηB_s^0 \to \eta \eta, \eta \eta^\prime and ηη\eta^\prime \eta^\prime decays in the perturbative QCD (pQCD) approach here. The pQCD predictions for the CP-averaged branching ratios are Br(B_s^0 \to \eta \eta) = \left (14.2^{+18.0}_{-7.5}) \times 10^{-6}, Br(B_s^0 \to \eta \eta^\prime)= \left (12.4 ^{+18.2}_{-7.0}) \times 10^{-6}, and Br(B_s^0 \to \eta^{\prime} \eta^{\prime}) = \left (9.2^{+15.3}_{-4.9}) \times 10^{-6}, which agree well with those obtained by employing the QCD factorization approach and also be consistent with available experimental upper limits. The gluonic contributions are small in size: less than 7% for BsηηB_s \to \eta \eta and ηη \eta \eta^\prime decays, and around 18% for BsηηB_s \to \eta' \eta' decay. The CP-violating asymmetries for three decays are very small: less than 3% in magnitude.Comment: 11 pages, 1 ps figure, Revte

    Phenomenology of quintessino dark matter -- Production of NLSP particles

    Full text link
    In the model of quintessino as dark matter particle, the dark matter and dark energy are unified in one superfield, where the dynamics of the Quintessence drives the Universe acceleration and its superpartner, quintessino, makes up the dark matter of the Universe. This scenario predicts the existence of long lived τ~\tilde{\tau} as the next lightest supersymmetric particle. In this paper we study the possibility of detecting τ~\tilde{\tau} produced by the high energy cosmic neutrinos interacting with the earth matter. By a detailed calculation we find that the event rate is one to several hundred per year at a detector with effective area of 1km21 km^2. The study in this paper can be also applied for models of gravitino or axino dark matter particles.Comment: 16 pages, 5 figures, a new section about NLSP stau is added, references adde

    The Current Flows in Pulsar Magnetospheres

    Full text link
    The global structure of the current flows in pulsar magnetospheres is investigated, with rough calculations of the elements in the magnetospheric circuit. It is emphasized that the potential of critical field lines is the same as that of interstellar medium, and that the pulsars whose rotation axes and magnetic dipole axes are parallel should be positively charged, in order to close the pulsar's current flows. The statistical relation between the radio luminosity and pulsar's electric charge (or the spindown power) may hint that the millisecond pulsars could be low-mass bare strange stars.Comment: 10 pages, 4 figure

    Quantum theory of electronic double-slit diffraction

    Full text link
    The phenomena of electron, neutron, atomic and molecular diffraction have been studied by many experiments, and these experiments are explained by some theoretical works. In this paper, we study electronic double-slit diffraction with quantum mechanical approach. We can obtain the results: (1) When the slit width aa is in the range of 3λ50λ3\lambda\sim 50\lambda we can obtain the obvious diffraction patterns. (2) when the ratio of d+aa=n(n=1,2,3,)\frac{d+a}{a}=n (n=1, 2, 3,\cdot\cdot\cdot), order 2n,3n,4n,2n, 3n, 4n,\cdot\cdot\cdot are missing in diffraction pattern. (3)When the ratio of d+aan(n=1,2,3,)\frac{d+a}{a}\neq n (n=1, 2, 3,\cdot\cdot\cdot), there isn't missing order in diffraction pattern. (4) We also find a new quantum mechanics effect that the slit thickness cc has a large affect to the electronic diffraction patterns. We think all the predictions in our work can be tested by the electronic double-slit diffraction experiment.Comment: 9pages, 14figure

    Staggered local density-of-states around the vortex in underdoped cuprates

    Get PDF
    We have studied a single vortex with the staggered flux (SF) core based on the SU(2) slave-boson theory of high TcT_c superconductors. We find that whereas the center in the vortex core is a SF state, as one moves away from the core center, a correlated staggered modulation of the hopping amplitude χ\chi and pairing amplitude Δ\Delta becomes predominant. We predict that in this region, the local density-of-states (LDOS) exhibits staggered modulation when measured on the bonds, which may be directly detected by STM experiments.Comment: 4 pages, 3 figure

    MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens

    Get PDF
    We propose the Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK) method for prioritizing single-guide RNAs, genes and pathways in genome-scale CRISPR/Cas9 knockout screens. MAGeCK demonstrates better performance compared with existing methods, identifies both positively and negatively selected genes simultaneously, and reports robust results across different experimental conditions. Using public datasets, MAGeCK identified novel essential genes and pathways, including EGFR in vemurafenib-treated A375 cells harboring a BRAF mutation. MAGeCK also detected cell type-specific essential genes, including BCR and ABL1, in KBM7 cells bearing a BCR-ABL fusion, and IGF1R in HL-60 cells, which depends on the insulin signaling pathway for proliferation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0554-4) contains supplementary material, which is available to authorized users
    corecore