6,476 research outputs found

    Adsorptive graphene doping: Effect of a polymer contaminant

    Get PDF
    © 2017 Author(s). Transfer-induced contamination of graphene and the limited stability of adsorptive dopants are two of the main issues faced in the practical realization of graphene-based electronics. Herein, we assess the stability of HNO3, MoO3, and AuCl3 dopants upon transferred graphene with different extents of polymer contamination. Sheet resistivity measurements prove that polymer residues induce a significantly degenerative effect in terms of doping stability for HNO3 and MoO3 and a highly stabilizing effect for AuCl3. Further characterization by Raman spectroscopy and atomic force microscopy (AFM) provides insight into the stability mechanism. Together, these findings demonstrate the relevance of contamination in the field of adsorptive doping for the realization of graphene-based functional devices

    A Fucus vesiculosus extract inhibits estrogen receptor activation and induces cell death in female cancer cell lines.

    Get PDF
    BACKGROUND: We previously reported the anti-estrogenic activity of the brown seaweed, Fucus vesiculosus. The present study aimed to further investigate its anti-estrogenic modes of action and to assess other potentially biologically relevant anti-tumorigenic effects in estrogen receptor (ER)-dependent and -independent female cancer cell lines. METHODS: The CALUX® assay was used to determine the effect of a F. vesiculosus extract (FVE) on activation of the ER. Aromatase enzymatic activity was measured to determine the potential effect of FVE on estradiol (E2) biosynthesis. Transcriptional activity profiling of 248 genes involved in cancer, immunity, hormonal regulation, protein phosphorylation, transcription, metabolism, and cellular structure was conducted using the NanoString nCounter® analysis system in FVE-treated breast, ovarian and endometrial cancer cell lines. The effects of FVE on cell viability, morphology, membrane integrity, mitochondrial toxicity, induction of apoptotic and autophagic markers, and cell signaling were also analyzed. RESULTS: In co-treatments with 12.5 pM (EC50) E2, FVE (2 %) reduced ER activation by 50 %, exhibiting potent ER antagonistic effects. FVE inhibited aromatase activity in an in vitro assay (IC50 2.0 %). ER-dependent and -independent cancer cell lines showed significantly decreased viability that correlated with increasing FVE concentrations and altered morphological features suggestive of apoptosis and autophagy. Expression of genes that were significantly altered by FVE (p < 0.05) revealed predominantly apoptotic, autophagic and kinase signaling pathways. FVE also effectively inhibited the phosphorylation of Akt, resulting in reduced mTORC1 activities to stimulate autophagy in cells. Concentration-dependent cleavage of PARP and induction of caspase-3 and -7 activities were observed in MDA-MB-231 cells supporting a role for FVE in the promotion of apoptosis. CONCLUSIONS: Our study provides new insights into the anti-estrogenic activity of F. vesiculosus. Moreover, the induction of autophagy and apoptosis on breast, endometrial and ovarian cancer cell lines suggests additional anti-tumorigenic actions of FVE that are independent of ER status in female cancers

    Heuristics in permutation GOMEA for solving the permutation flowshop scheduling problem

    Get PDF
    The recently introduced permutation Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) has shown to be an effective Model Based Evolutionary Algorithm (MBEA) for permutation problems. So far, permutation GOMEA has only been used in the context of Black-Box Optimization (BBO). This paper first shows that permutation GOMEA can be improved by incorporating a constructive heuristic to seed the initial population. Secondly, the paper shows that hybridizing with job swapping neighborhood search does not lead to consistent improvement. The seeded permutation GOMEA is compared to a state-of-the-art algorithm (VNS4) for solving the Permutation Flowshop Scheduling Problem (PFSP). Both unstructured and structured instances are used in the benchmarks. The results show that permutation GOMEA often outperforms the VNS4 algorithm for the PFSP with the total flowtime criterion

    An anaerobic membrane bioreactor – membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants

    Get PDF
    © 2018 In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3–0.5 L/g CODadded biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation

    Anaerobic co-digestion: A critical review of mathematical modelling for performance optimization

    Full text link
    © 2016 Anaerobic co-digestion (AcoD) is a pragmatic approach to simultaneously manage organic wastes and produce renewable energy. This review demonstrates the need for improving AcoD modelling capacities to simulate the complex physicochemical and biochemical processes. Compared to mono-digestion, AcoD is more susceptible to process instability, as it operates at a higher organic loading and significant variation in substrate composition. Data corroborated here reveal that it is essential to model the transient variation in pH and inhibitory intermediates (e.g. ammonia and organic acids) for AcoD optimization. Mechanistic models (based on the ADM1 framework) have become the norm for AcoD modelling. However, key features in current AcoD models, especially relationships between system performance and co-substrates’ properties, organic loading, and inhibition mechanisms, remain underdeveloped. It is also necessary to predict biogas quantity and composition as well as biosolids quality by considering the conversion and distribution of sulfur, phosphorus, and nitrogen during AcoD

    Inelastic current-voltage characteristics of atomic and molecular junctions

    Full text link
    We report first-principles calculations of the inelastic current-voltage (I-V) characteristics of a gold point contact and a molecular junction in the nonresonant regime. Discontinuities in the I-V curves appear in correspondence to the normal modes of the structures. Due to the quasi-one-dimensional nature of these systems, specific modes with large longitudinal component dominate the inelastic I-V curves. In the case of the gold point contact, our results are in good agreement with recent experimental data. For the molecular junction, we find that the inelastic I-V curves are quite sensitive to the structure of the contact between the molecule and the electrodes thus providing a powerful tool to extract the bonding geometry in molecular wires.Comment: 4 pages, 3 figure

    Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges

    Get PDF
    © 2018 This review examines the potential of anaerobic membrane bioreactor (AnMBR) to serve as the core technology for simultaneous recovery of clean water, energy, and nutrient from wastewater. The potential is significant as AnMBR treatment can remove a board range of trace organic contaminants relevant to water reuse, convert organics in wastewater to biogas for subsequent energy production, and liberate nutrients to soluble forms (e.g. ammonia and phosphorus) for subsequent recovery for fertilizer production. Yet, there remain several significant challenges to the further development of AnMBR. These challenges evolve around the dilute nature of municipal wastewater, which entails the need for pre-concentrating wastewater prior to AnMBR, and hence, issues related to salinity build-up, accumulation of substances, membrane fouling, and membrane stability. Strategies to address these challenges are proposed and discussed. A road map for further research is also provided to guide future AnMBR development toward resource recovery

    Adversarial Attacks and Detection on Reinforcement Learning-Based Interactive Recommender Systems

    Full text link
    Adversarial attacks pose significant challenges for detecting adversarial attacks at an early stage. We propose attack-agnostic detection on reinforcement learning-based interactive recommendation systems. We first craft adversarial examples to show their diverse distributions and then augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data. Finally, we study the attack strength and frequency of adversarial examples and evaluate our model on standard datasets with multiple crafting methods. Our extensive experiments show that most adversarial attacks are effective, and both attack strength and attack frequency impact the attack performance. The strategically-timed attack achieves comparative attack performance with only 1/3 to 1/2 attack frequency. Besides, our black-box detector trained with one crafting method has the generalization ability over several crafting methods

    Reversed Janus Micro/Nanomotors with Internal Chemical Engine

    Get PDF
    Self-motile Janus colloids are important for enabling a wide variety of microtechnology applications as well as for improving our understanding of the mechanisms of motion of artificial micro- and nanoswimmers. We present here micro/nanomotors which possess a reversed Janus structure of an internal catalytic "chemical engine". The catalytic material (here platinum (Pt)) is embedded within the interior of the mesoporous silica (mSiO(2))-based hollow particles and triggers the decomposition of H2O2 when suspended in an aqueous peroxide (H2O2) solution. The pores/gaps at the noncatalytic (Pt) hemisphere allow the exchange of chemical species in solution between the exterior and the interior of the particle. By varying the diameter of the particles, we observed size-dependent motile behavior in the form of enhanced diffusion for 500 nm particles, and self-phoretic motion, toward the nonmetallic part, for 1.5 and 3 mu m ones. The direction of motion was rationalized, by a theoretical model based on self-phoresis. For the 3 mu m particles, a change in the morphology of the porous part is observed, which is accompanied by a change in the mechanism of propulsion via bubble nucleation and ejection as well as a change in the direction of motion.1128Ysciescopu

    Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998

    No full text
    Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods. Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments
    corecore