126 research outputs found
Ultrahard carbon film from epitaxial two-layer graphene
Atomically thin graphene exhibits fascinating mechanical properties, although
its hardness and transverse stiffness are inferior to those of diamond. To
date, there hasn't been any practical demonstration of the transformation of
multi-layer graphene into diamond-like ultra-hard structures. Here we show that
at room temperature and after nano-indentation, two-layer graphene on SiC(0001)
exhibits a transverse stiffness and hardness comparable to diamond, resisting
to perforation with a diamond indenter, and showing a reversible drop in
electrical conductivity upon indentation. Density functional theory
calculations suggest that upon compression, the two-layer graphene film
transforms into a diamond-like film, producing both elastic deformations and
sp2-to-sp3 chemical changes. Experiments and calculations show that this
reversible phase change is not observed for a single buffer layer on SiC or
graphene films thicker than 3 to 5 layers. Indeed, calculations show that
whereas in two-layer graphene layer-stacking configuration controls the
conformation of the diamond-like film, in a multilayer film it hinders the
phase transformation.Comment: Published online on Nature Nanotechnology on December 18, 201
Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids
In this review, we describe and analyze a mesoscale simulation method for
fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now
called multi-particle collision dynamics (MPC) or stochastic rotation dynamics
(SRD). The method consists of alternating streaming and collision steps in an
ensemble of point particles. The multi-particle collisions are performed by
grouping particles in collision cells, and mass, momentum, and energy are
locally conserved. This simulation technique captures both full hydrodynamic
interactions and thermal fluctuations. The first part of the review begins with
a description of several widely used MPC algorithms and then discusses
important features of the original SRD algorithm and frequently used
variations. Two complementary approaches for deriving the hydrodynamic
equations and evaluating the transport coefficients are reviewed. It is then
shown how MPC algorithms can be generalized to model non-ideal fluids, and
binary mixtures with a consolute point. The importance of angular-momentum
conservation for systems like phase-separated liquids with different
viscosities is discussed. The second part of the review describes a number of
recent applications of MPC algorithms to study colloid and polymer dynamics,
the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of
viscoelastic fluids
Viral Findings in Adult Hematological Patients with Neutropenia
BACKGROUND: Until recently, viral infections in patients with hematological malignancies were concerns primarily in allogeneic hematopoietic stem cell transplant (HSCT) recipients. During the last years, changed treatment regimens for non-transplanted patients with hematological malignancies have had potential to increase the incidence of viral infections in this group. In this study, we have prospectively investigated the prevalence of a broad range of respiratory viruses in nasopharyngeal aspirate (NPA) as well as viruses that commonly reactivate after allogeneic HSCT. METHODOLOGY/PRINCIPAL FINDINGS: Patients with hematological malignancies and therapy induced neutropenia (n = 159) were screened regarding a broad range of common respiratory viruses in the nasopharynx and for viruses commonly detected in severely immunosuppressed patients in peripheral blood. Quantitative PCR was used for detection of viruses. A viral pathogen was detected in 35% of the patients. The detection rate was rather similar in blood (22%) and NPA (18%) with polyoma BK virus and rhinovirus as dominating pathogens in blood and NPA, respectively. Patients with chronic lymphocytic leukemia (CLL) (p<0.01) and patients with fever (p<0.001) were overrepresented in the virus-positive group. Furthermore, viral findings in NPA were associated with upper respiratory symptoms (URTS) (p<0.0001). CONCLUSIONS/SIGNIFICANCE: Both respiratory viral infections and low titers of viruses in blood from patients with neutropenia were common. Patients with CLL and patients with fever were independently associated to these infections, and viral findings in NPA were associated to URTS indicating active infection. These findings motivate further studies on viruses' impact on this patient category and their potential role as causative agents of fever during neutropenia
Morphological and Chemical Mechanisms of Elongated Mineral Particle Toxicities
Much of our understanding regarding the mechanisms for induction of disease following inhalation of respirable elongated mineral particles (REMP) is based on studies involving the biological effects of asbestos fibers. The factors governing the disease potential of an exposure include duration and frequency of exposures; tissue-specific dose over time; impacts on dose persistence from in vivo REMP dissolution, comminution, and clearance; individual susceptibility; and the mineral type and surface characteristics. The mechanisms associated with asbestos particle toxicity involve two facets for each particle's contribution: (1) the physical features of the inhaled REMP, which include width, length, aspect ratio, and effective surface area available for cell contact; and (2) the surface chemical composition and reactivity of the individual fiber/elongated particle. Studies in cell-free systems and with cultured cells suggest an important way in which REMP from asbestos damage cellular molecules or influence cellular processes. This may involve an unfortunate combination of the ability of REMP to chemically generate potentially damaging reactive oxygen species, through surface iron, and the interaction of the unique surfaces with cell membranes to trigger membrane receptor activation. Together these events appear to lead to a cascade of cellular events, including the production of damaging reactive nitrogen species, which may contribute to the disease process. Thus, there is a need to be more cognizant of the potential impact that the total surface area of REMP contributes to the generation of events resulting in pathological changes in biological systems. The information presented has applicability to inhaled dusts, in general, and specifically to respirable elongated mineral particles
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
- …