15 research outputs found

    Global biogeography of highly diverse protistan communities in soil.

    Get PDF
    Protists are ubiquitous members of soil microbial communities, but the structure of these communities, and the factors that influence their diversity, are poorly understood. We used barcoded pyrosequencing to survey comprehensively the diversity of soil protists from 40 sites across a broad geographic range that represent a variety of biome types, from tropical forests to deserts. In addition to taxa known to be dominant in soil, including Cercozoa and Ciliophora, we found high relative abundances of groups such as Apicomplexa and Dinophyceae that have not previously been recognized as being important components of soil microbial communities. Soil protistan communities were highly diverse, approaching the extreme diversity of their bacterial counterparts across the same sites. Like bacterial taxa, protistan taxa were not globally distributed, and the composition of these communities diverged considerably across large geographic distances. However, soil protistan and bacterial communities exhibit very different global-scale biogeographical patterns, with protistan communities strongly structured by climatic conditions that regulate annual soil moisture availability

    Protistan community analysis: key findings of a large-scale molecular sampling

    No full text
    Protists are perhaps the most lineage-rich of microbial lifeforms, but remain largely unknown. High-throughput sequencing technologies provide opportunities to screen whole habitats in depth and enable detailed comparisons of different habitats to measure, compare and map protistan diversity. Such comparisons are often limited by low sample numbers within single studies and a lack of standardisation between studies. Here, we analysed 232 samples from 10 sampling campaigns using a standardised PCR protocol and bioinformatics pipeline. We show that protistan community patterns are highly consistent within habitat types and geographic regions, provided that sample processing is standardised. Community profiles are only weakly affected by fluctuations of the abundances of the most abundant taxa and, therefore, provide a sound basis for habitat comparison beyond random short-term fluctuations in the community composition. Further, we provide evidence that distribution patterns are not solely resulting from random processes. Distinct habitat types and distinct taxonomic groups are dominated by taxa with distinct distribution patterns that reflect their ecology with respect to dispersal and habitat colonisation. However, there is no systematic shift of the distribution pattern with taxon abundance
    corecore