29,385 research outputs found
Exchange Bias in Ferromagnetic/Compensated Antiferromagnetic Bilayers
By means of micromagnetic spin dynamics calculations, a quantitative
calculation is carried out to explore the mechanism of exchange bias (EB) in
ferromagnetic (FM)/compensated antiferromagnetic (AFM) bilayers. The
antiferromagnets with low and high Neel temperatures have been both considered,
and the crossover from negative to positive EB is found only in the case with
low Neel temperature. We propose that the mechanism of EB in FM/compensated AFM
bilayers is due to the symmetry broken of AFM that yields some net
ferromagnetic components.Comment: 3figure
A note on local well-posedness of generalized KdV type equations with dissipative perturbations
In this note we report local well-posedness results for the Cauchy problems
associated to generalized KdV type equations with dissipative perturbation for
given data in the low regularity -based Sobolev spaces. The method of
proof is based on the {\em contraction mapping principle} employed in some
appropriate time weighted spaces.Comment: 14 page
Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance
A numerical modelling study on regional mercury budget for eastern North America
International audienceIn this study, we have integrated an up-to-date physio-chemical transformation mechanism of Hg into the framework of US EPA's CMAQ model system. In addition, the model adapted detailed calculations of the air-surface exchange for Hg to properly describe Hg re-emissions and dry deposition from and to natural surfaces. The mechanism covers Hg in three categories, elemental Hg (Hg0), reactive gaseous Hg (RGM) and particulate Hg (HgP). With interfacing to MM5 (meteorology processor) and SMOKE (emission processor), we applied the model to a 4-week period in June/July 1995 on a domain covering most of eastern North America. Results indicate that the model simulates reasonably well the levels of total gaseous Hg (TGM) and the specific Hg wet deposition measurements made by the Hg deposition network (MDN). Moreover, results from various scenario runs reveal that the Hg system behaves in a closely linear way in terms of contributions from different source categories, i.e. anthropogenic emissions, natural re-emissions and background. Analyses of the scenario results suggest that 37% of anthropogenically emitted Hg was deposited back in the model domain with 5155.2 kg of anthropogenic Hg moving out of the domain during the simulation period. Overall, the domain served as a source, which supplied a net 461.2 kg of Hg to the global background pool over the period. Our model validation and a sensitivity test further rationalized the rate constant for gaseous oxidation of Hg0 by hydroxyl radical OH used in the global scale modelling study by Bergan and Rodhe (2001). A further laboratory determination of the reaction rate constant, including its temperature dependence, stands as one of the important issues critical to improving our knowledge on the budget and cycling of Hg
Low-temperature heat transport of Nd_2CuO_4: Roles of Nd magnons and spin-structure transitions
We report the magnetic-field dependence of thermal conductivity (\kappa) of
an insulating cuprate Nd_2CuO_4 at very low temperatures down to 0.3 K. It is
found that apart from the paramagnetic moments scattering on phonons, the
Nd^{3+} magnons can act as either heat carriers or phonon scatterers, which
strongly depends on the long-range antiferromagnetic transition and the
field-induced transitions of spin structure. In particular, the Nd^{3+} magnons
can effectively transport heat in the spin-flopped state of the Nd^{3+}
sublattice. However, both the magnon transport and the magnetic scattering are
quenched at very high fields. The spin re-orientations under the in-plane field
can be conjectured from the detailed field dependence of \kappa.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.
- …
