9,006 research outputs found
Filtering for networked stochastic time-delay systems with sector nonlinearity
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the filtering problem for a class of discrete-time stochastic nonlinear networked control systems with network-induced incomplete measurements. The incomplete measurements include both the multiple random communication delays and random packet losses, which are modeled by a unified stochastic expression in terms of a set of indicator functions that is dependent on certain stochastic variable. The nonlinear functions are assumed to satisfy the sector nonlinearities. The purpose of the addressed filtering problem is to design a linear filter such that the filtering-error dynamics is exponentially mean-square stable. By using the linear-matrix-inequality (LMI) method and delay-dependent technique, sufficient conditions are derived which are dependent on the occurrence probability of both the random communication delays and missing measurement. The filter gain is then characterized by the solution to a set of LMIs. A simulation example is exploited to demonstrate the effectiveness of the proposed design procedures
Recommended from our members
Effect factors of part-load performance for various Organic Rankine cycles using in engine waste heat recovery
The Organic Rankine Cycle (ORC) is regarded as one of the most promising waste heat recovery technologies for electricity generation engines. Since the engine usually operates under different working conditions, it is important to research the part-load performance of the ORC. In order to reveal the effect factors of part-load performance, four different forms of ORCs are compared in the study with dynamic math models established in SIMULINK. They are the ORC applying low temperature working fluid R245fa with a medium heat transfer cycle, the ORCs with high temperature working fluid toluene heated directly by exhaust condensing at low pressure and high pressure, and the double-stage ORC. It is regarded that the more slowly the system output power decreases, the better part-load performance it has. Based on a comparison among the four systems, the effects of evaporating pressure, condensing condition, working fluid, and system structure on part-load performance are revealed in the work. Further, it is found that the system which best matches with the heat source not only performs well under the design conditions, but also has excellent part-load performance
Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field
The thermal entanglement in a two-qubit Heisenberg \emph{XXZ} spin chain is
investigated under an inhomogeneous magnetic field \emph{b}. We show that the
ground-state entanglement is independent of the interaction of
\emph{z}-component . The thermal entanglement at the fixed temperature
can be enhanced when increases. We strictly show that for any
temperature \emph{T} and the entanglement is symmetric with respect to
zero inhomogeneous magnetic field, and the critical inhomogeneous magnetic
field is independent of . The critical magnetic field
increases with the increasing but the maximum entanglement value that the
system can arrive becomes smaller.Comment: 5 EPS figure
A Distinct Mechanism to Achieve Efficient Signal Recognition Particle (SRP)-SRP Receptor Interaction by the Chloroplast SRP Pathway
Cotranslational protein targeting by the signal recognition particle (SRP) requires the SRP RNA, which accelerates the interaction between the SRP and SRP receptor 200-fold. This otherwise universally conserved SRP RNA is missing in the chloroplast SRP (cpSRP) pathway. Instead, the cpSRP and cpSRP receptor (cpFtsY) by themselves can interact 200-fold faster than their bacterial homologues. Here, cross-complementation analyses revealed the molecular origin underlying their efficient interaction. We found that cpFtsY is 5- to 10-fold more efficient than Escherichia coli FtsY at interacting with the GTPase domain of SRP from both chloroplast and bacteria, suggesting that cpFtsY is preorganized into a conformation more conducive to complex formation. Furthermore, the cargo-binding M-domain of cpSRP provides an additional 100-fold acceleration for the interaction between the chloroplast GTPases, functionally mimicking the effect of the SRP RNA in the cotranslational targeting pathway. The stimulatory effect of the SRP RNA or the M-domain of cpSRP is specific to the homologous SRP receptor in each pathway. These results strongly suggest that the M-domain of SRP actively communicates with the SRP and SR GTPases and that the cytosolic and chloroplast SRP pathways have evolved distinct molecular mechanisms (RNA vs. protein) to mediate this communication
Robust filtering for gene expression time series data with variance constraints
This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Taylor & Francis Ltd.In this paper, an uncertain discrete-time stochastic system is employed to represent a model for gene regulatory networks from time series data. A robust variance-constrained filtering problem is investigated for a gene expression model with stochastic disturbances and norm-bounded parameter uncertainties, where the stochastic perturbation is in the form of a scalar Gaussian white noise with constant variance and the parameter uncertainties enter both the system matrix and the output matrix. The purpose of the addressed robust filtering problem is to design a linear filter such that, for the admissible bounded uncertainties, the filtering error system is Schur stable and the individual error variance is less than a prespecified upper bound. By using the linear matrix inequality (LMI) technique, sufficient conditions are first derived for ensuring the desired filtering performance for the gene expression model. Then the filter gain is characterized in terms of the solution to a set of LMIs, which can easily be solved by using available software packages. A simulation example is exploited for a gene expression model in order to demonstrate the effectiveness of the proposed design procedures.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany
Aggregated Needs and the Location Choice of Households in Taipei
This paper examines the impact of aggregated needs of household members on the choice of housing location in Taipei, Taiwan, using a sample of 11,191 households and information collected from the 1990 Census of Population and Housing. Our results indicate that the choice of housing location is significantly affected impacted by the age, family origin, past housing location, education and occupation status, and the location of the workplaces of both spouses. We also find that this decision is more significantly influenced by the attributes of the male spouse than the female. However, among the households with a female household head, the female spouse characteristics are more likely to be significant. Our results also offer a snapshot of todayās Taiwanese culture and shows that it is dramatically different from the commonly believed male-dominated traditional Chinese culture.Aggregated Needs, Location Choice, Probit Model
- ā¦