26,266 research outputs found

    Galilean invariance of lattice Boltzmann models

    Full text link
    It is well-known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity dependent viscosity. This unphysical dependency violates the Galilean invariance and limits the validation domain of the LB method to near incompressible flows. As previously shown, recovery of correct transport phenomena in kinetic equations depends on the higher hydrodynamic moments. In this Letter, we give specific criteria for recovery of various transport coefficients. The Galilean invariance of a general class of LB models is demonstrated via numerical experiments

    Thermodynamical quantities of lattice full QCD from an efficient method

    Get PDF
    I extend to QCD an efficient method for lattice gauge theory with dynamical fermions. Once the eigenvalues of the Dirac operator and the density of states of pure gluonic configurations at a set of plaquette energies (proportional to the gauge action) are computed, thermodynamical quantities deriving from the partition function can be obtained for arbitrary flavor number, quark masses and wide range of coupling constants, without additional computational cost. Results for the chiral condensate and gauge action are presented on the 10410^4 lattice at flavor number Nf=0N_f=0, 1, 2, 3, 4 and many quark masses and coupling constants. New results in the chiral limit for the gauge action and its correlation with the chiral condensate, which are useful for analyzing the QCD chiral phase structure, are also provided.Comment: Latex, 11 figures, version accepted for publicatio

    Precision measurements of A^n_1 in the deep inelastic regime

    Get PDF
    We have performed precision measurements of the double-spin virtual-photon asymmetry A_1 on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer and a longitudinally and transversely polarized ^3He target. Our data cover a wide kinematic range 0.277 ≤ x ≤0.548 at an average Q^2 value of 3.078 (GeV/c)^2, doubling the available high-precision neutron data in this x range. We have combined our results with world data on proton targets to make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous observation of an A_1^n zero crossing near x=0.5. We find no evidence of a transition to a positive slope in (Δd+Δd)/(d+d) up to x=0.548x=0.548

    Insulator-metal transition shift related to magnetic polarons in La0.67-xYxCa0.33MnO3

    Full text link
    The magnetic transport properties have been measured for La0.67-xYxCa0.33MnO3 (0 <= x <= 0.14) system. It was found that the transition temperature Tp almost linearly moves to higher temperature as H increases. Electron spin resonance confirms that above Tp, there exist ferromagnetic clusters. From the magnetic polaron point of view, the shift of Tp vs. H was understood, and it was estimated that the size of the magnetic polaron is of 9.7~15.4 angstrom which is consistent with the magnetic correlation length revealed by the small-angle neutron-scattering technique. The transport properties at temperatures higher than Tp conform to the variable-range hopping mechanism.Comment: 22 pages, 6 figures, pdf, to be published in Euro. Phys. J.

    A Lattice Boltzmann method for simulations of liquid-vapor thermal flows

    Full text link
    We present a novel lattice Boltzmann method that has a capability of simulating thermodynamic multiphase flows. This approach is fully thermodynamically consistent at the macroscopic level. Using this new method, a liquid-vapor boiling process, including liquid-vapor formation and coalescence together with a full coupling of temperature, is simulated for the first time.Comment: one gzipped tar file, 19 pages, 4 figure
    • …
    corecore