9,102 research outputs found
Searches for Physics Beyond the Standard Model at Colliders
All experimental measurements of particle physics today are beautifully
described by the Standard Model. However, there are good reasons to believe
that new physics may be just around the corner at the TeV energy scale. This
energy range is currently probed by the Tevatron and HERA accelerators and
selected results of searches for physics beyond the Standard Model are
presented here. No signals for new physics have been found and limits are
placed on the allowed parameter space for a variety of different particles.Comment: Proceedings for 2007 Europhysics Conference on High Energy Physics,
Manchester, July 200
Off center centers in a quantum well in the presence of a perpendicular magnetic field: angular momentum transition and magnetic evaporation
We investigate the effect of the position of the donor in the quantum well on
the energy spectrum and the oscillator strength of the D- system in the
presence of a perpendicular magnetic field. As a function of the magnetic field
we find that when the D- centers are placed sufficiently off-center they
undergo singlet-triplet transitions which are similar to those found in
many-electron parabolic quantum dots. The main difference is that the number of
such transitions depends on the position of the donor and only a finite number
of such singlet-triplet transitions are found as function of the strength of
the magnetic field. For sufficiently large magnetic fields the two electron
system becomes unbound. For the near center D- system no singlet-triplet and no
unbinding of the D- is found with increasing magnetic field. A magnetic field
vs. donor position phase diagram is presented that depends on the width of the
quantum well.Comment: 16 pages, 17 figures. Accepted for publication in Phys. Rev.
Hot Nuclear Matter in the Quark Meson Coupling Model
We study here hot nuclear matter in the quark meson coupling (QMC) model
which incorporates explicitly quark degrees of freedom, with quarks coupled to
scalar and vector mesons. The equation of state of nuclear matter including the
composite nature of the nucleons is calculated at finite temperatures. The
calculations are done taking into account the medium-dependent bag constant.
Nucleon properties at finite temperatures as calculated here are found to be
appreciably different from the value at Comment: 19 pages including 6 eps files, uses revtex; PACS number:
21.65.+f,24.85.+p,12.39.Ba,12.38.L
Non-universal minimal Z' models: present bounds and early LHC reach
We consider non-universal 'minimal' Z' models, whose additional U(1) charge
is a non-anomalous linear combination of the weak hypercharge Y, the baryon
number B and the partial lepton numbers (L_e, L_mu, L_tau), with no exotic
fermions beyond three standard families with right-handed neutrinos. We show
that the observed pattern of neutrino masses and mixing can be fully reproduced
by a gauge-invariant renormalizable Lagrangian, and flavor-changing neutral
currents in the charged lepton sector are suppressed by a GIM mechanism. We
then discuss the phenomenology of some benchmark models. The electrophilic
B-3L_e model is significantly constrained by electroweak precision tests, but
still allows to fit the hint of an excess observed by CDF in dielectrons but
not in dimuons. The muonphilic B-3L_mu model is very mildly constrained by
electroweak precision tests, so that even the very early phase of the LHC can
explore significant areas of parameter space. We also discuss the hadrophobic
L_mu-L_tau model, which has recently attracted interest in connection with some
puzzling features of cosmic ray spectra.Comment: 29 pages, 13 figure
White Matter Tract Pathology in Pediatric Anoxic Brain Injury from Drowning
ABSTRACT BACKGROUND AND PURPOSE: Although drowning is a leading cause of mortality and morbidity in young children, the neuropathologic consequences have not been fully determined. The purpose of this article was to quantitatively characterize white matter microstructural abnormalities in pediatric anoxic brain injury from nonfatal drowning and investigate the correlation with motor function
Recommended from our members
A Photometric Redshift of z ~ 9.4 for GRB 090429B
Gamma-ray bursts (GRBs) serve as powerful probes of the early universe, with their luminous afterglows revealing the locations and physical properties of star-forming galaxies at the highest redshifts, and potentially locating first-generation (Population III) stars. Since GRB afterglows have intrinsically very simple spectra, they allow robust redshifts from low signal-to-noise spectroscopy, or photometry. Here we present a photometric redshift of z ~ 9.4 for the Swift detected GRB 090429B based on deep observations with Gemini-North, the Very Large Telescope, and the GRB Optical and Near-infrared Detector. Assuming a Small Magellanic Cloud dust law (which has been found in a majority of GRB sight lines), the 90% likelihood range for the redshift is 9.06 7. The non-detection of the host galaxy to deep limits (Y(AB) ~ 28, which would correspond roughly to 0.001L* at z = 1) in our late-time optical and infrared observations with the Hubble Space Telescope strongly supports the extreme-redshift origin of GRB 090429B, since we would expect to have detected any low-z galaxy, even if it were highly dusty. Finally, the energetics of GRB 090429B are comparable to those of other GRBs and suggest that its progenitor is not greatly different from those of lower redshift bursts
GRB Fireball Physics: Prompt and Early Emission
We review the fireball shock model of gamma-ray burst prompt and early
afterglow emission in light of rapid follow-up measurements made and enabled by
the multi-wavelength Swift satellite. These observations are leading to a
reappraisal and expansion of the previous standard view of the GRB and its
fireball. New information on the behavior of the burst and afterglow on minutes
to hour timescales has led, among other results, to the discovery and follow-up
of short GRB afterglows, the opening up of the z>6 redshift range, and the
first prompt multi-wavelength observations of a long GRB-supernova. We discuss
the salient observational results and some associated theoretical issues.Comment: 23 pages. Published in the New Journal of Physics Focus Issue, "Focus
on Gamma-Ray Bursts in the Swift Era" (Eds. D. H. Hartmann, C. D. Dermer & J.
Greiner). V2: Minor change
X-Ray Flares of Gamma-Ray Bursts: Quakes of Solid Quark Stars?
We propose a star-quake model to understand X-ray flares of both long and
short Gamma-ray bursts (GRBs) in a solid quark star regime. Two kinds of
central engines for GRBs are available if pulsar-like stars are actually
(solid) quark stars, i.e., the SNE-type GRBs and the SGR-type GRBs. It is found
that a quark star could be solidified about 10^3 to 10^6 s later after its
birth if the critical temperature of phase transition is a few MeV, and then a
new source of free energy (i.e., elastic and gravitational ones, rather than
rotational or magnetic energy) could be possible to power GRB X-ray flares.Comment: 8 pages, latex file. 2 figures. To appear in Science in China Series
- âŠ