55,661 research outputs found
Bounds for eigenvalue ratios of the Laplacian
For a bounded domain with a piecewise smooth boundary in an
-dimensional Euclidean space , we study eigenvalues of the
Dirichlet eigenvalue problem of the Laplacian. First we give a general
inequality for eigenvalues of the Laplacian. As an application, we study lower
order eigenvalues of the Laplacian and derive the ratios of lower order
eigenvalues of the Laplacian.Comment: 14 page
A review of personal communications services
This article can be accessed from the link below - Copyright @ 2009 Nova Science Publishers, LtdPCS is an acronym for Personal Communications Service. PCS has two layers of
meaning. At the low layer, from the technical perspective, PCS is a 2G mobile
communication technology operating at the 1900 MHz frequency range. At the upper
layer, PCS is often used as an umbrella term that includes various wireless access and
personal mobility services with the ultimate goal of enabling users to freely communicate
with anyone at anytime and anywhere according to their demand. Ubiquitous PCS can be implemented by integrating the wireless and wireline systems on the basis of intelligent network (IN), which provides network functions of terminal and personal mobility. In this chapter, we focus on various aspects of PCS except location management. First we describe the motivation and technological evolution for personal communications. Then we introduce three key issues related to PCS: spectrum allocation, mobility, and standardization efforts. Since PCS involves several different communication
technologies, we introduce its heterogeneous and distributed system architecture. IN is
also described in detail because it plays a critical role in the development of PCS. Finally, we introduce the application of PCS and its deployment status since the mid-term of 1990’s.This work was supported in part by the National Natural Science Foundation of China
under Grant No. 60673159 and 70671020; the National High-Tech Research and Development Plan of China under Grant No. 2006AA01Z214, and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1
Tunnel switch diode based on AlSb/GaSb heterojunctions
We report on tunnel switch diodes based on AlSb barriers and GaSb p–n junctions grown by molecular beam epitaxy. These were the devices with thyristor like switching in the GaSb/AlSb system. The characteristic "S" shaped current–voltage curve was found to occur for structures with AlSb barriers less than 300 Å thick. The switching voltage and current density exhibited less sensitivity to barrier and epilayer thickness than was predicted by the punch-through model. The results were correlated with drift diffusion simulations which have been modified to account for the presence of a tunneling contact
Solar flare hard X-ray spikes observed by RHESSI: a statistical study
Context. Hard X-ray (HXR) spikes refer to fine time structures on timescales
of seconds to milliseconds in high-energy HXR emission profiles during solar
flare eruptions. Aims. We present a preliminary statistical investigation of
temporal and spectral properties of HXR spikes. Methods. Using a three-sigma
spike selection rule, we detected 184 spikes in 94 out of 322 flares with
significant counts at given photon energies, which were detected from
demodulated HXR light curves obtained by the Reuven Ramaty High Energy Solar
Spectroscopic Imager (RHESSI). About one fifth of these spikes are also
detected at photon energies higher than 100 keV. Results. The statistical
properties of the spikes are as follows. (1) HXR spikes are produced in both
impulsive flares and long-duration flares with nearly the same occurrence
rates. Ninety percent of the spikes occur during the rise phase of the flares,
and about 70% occur around the peak times of the flares. (2) The time durations
of the spikes vary from 0.2 to 2 s, with the mean being 1.0 s, which is not
dependent on photon energies. The spikes exhibit symmetric time profiles with
no significant difference between rise and decay times. (3) Among the most
energetic spikes, nearly all of them have harder count spectra than their
underlying slow-varying components. There is also a weak indication that spikes
exhibiting time lags in high-energy emissions tend to have harder spectra than
spikes with time lags in low-energy emissions.Comment: 16 pages, 13 figure
Time Quantified Monte Carlo Algorithm for Interacting Spin Array Micromagnetic Dynamics
In this paper, we reexamine the validity of using time quantified Monte Carlo
(TQMC) method [Phys. Rev. Lett. 84, 163 (2000); Phys. Rev. Lett. 96, 067208
(2006)] in simulating the stochastic dynamics of interacting magnetic
nanoparticles. The Fokker-Planck coefficients corresponding to both TQMC and
Langevin dynamical equation (Landau-Lifshitz-Gilbert, LLG) are derived and
compared in the presence of interparticle interactions. The time quantification
factor is obtained and justified. Numerical verification is shown by using TQMC
and Langevin methods in analyzing spin-wave dispersion in a linear array of
magnetic nanoparticles.Comment: Accepted for publication in Phys. Rev.
- …