24,287 research outputs found

    Time reversal Aharonov-Casher effect in mesoscopic rings with Rashba spin-orbital interaction

    Full text link
    The time reversal Aharonov-Casher (AC) interference effect in the mesoscopic ring structures, based on the experiment in Phys. Rev. Lett. \textbf{97}, 196803 (2006), is studied theoretically. The transmission curves are calculated from the scattering matrix formalism, and the time reversal AC interference frequency is singled out from the Fourier spectra in numerical simulations. This frequency is in good agreement with analytical result. It is also shown that in the absent of magnetic field, the Altshuler-Aronov-Spivak type (time reversal) AC interference retains under the influence of strong disorder, while the Aharonov-Bohm type AC interference is suppressed.Comment: 5 pages, 4 figures, accepted by Phys. Rev.

    Strain accommodation through facet matching in La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4}/Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} ramp-edge junctions

    Get PDF
    Scanning nano-focused X-ray diffraction (nXRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} and superconducting hole-doped La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} with a 3.3 degree tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.Comment: 5 pages, 4 figures & 3 pages supplemental information with 2 figures. Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APL Mat. 3, 086101 (2015) and may be found at http://dx.doi.org/10.1063/1.492779

    Large magnetothermal conductivity of HoMnO_3 single crystals and its relation to the magnetic-field induced transitions of magnetic structure

    Full text link
    We study the low-temperature heat transport of HoMnO_3 single crystals to probe the magnetic structures and their transitions induced by magnetic field. It is found that the low-T thermal conductivity (\kappa) shows very strong magnetic-field dependence, with the strongest suppression of nearly 90% and the biggest increase of 20 times of \kappa compared to its zero-field value. In particular, some ``dip"-like features show up in \kappa(H) isotherms for field along both the ab plane and the c axis. These behaviors are found to shed new light on the complex H-T phase diagram and the field-induced re-orientations of Mn^{3+} and Ho^{3+} spin structures. The results also demonstrate a significant spin-phonon coupling in this multiferroic compound.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev.

    From cyber-security deception to manipulation and gratification through gamification

    Get PDF
    Over the last two decades the field of cyber-security has experienced numerous changes associated with the evolution of other fields, such as networking, mobile communications, and recently the Internet of Things (IoT) [3]. Changes in mindsets have also been witnessed, a couple of years ago the cyber-security industry only blamed users for their mistakes often depicted as the number one reason behind security breaches. Nowadays, companies are empowering users, modifying their perception of being the weak link, into being the center-piece of the network design [4]. Users are by definition "in control" and therefore a cyber-security asset. Researchers have focused on the gamification of cyber- security elements, helping users to learn and understand the concepts of attacks and threats, allowing them to become the first line of defense to report anoma- lies [5]. However, over the past years numerous infrastructures have suffered from malicious intent, data breaches, and crypto-ransomeware, clearly showing the technical "know-how" of hackers and their ability to bypass any security in place, demonstrating that no infrastructure, software or device can be consid- ered secure. Researchers concentrated on the gamification, learning and teaching theory of cyber-security to end-users in numerous fields through various techniques and scenarios to raise cyber-situational awareness [2][1]. However, they overlooked the users’ ability to gather information on these attacks. In this paper, we argue that there is an endemic issue in the the understanding of hacking practices leading to vulnerable devices, software and architectures. We therefore propose a transparent gamification platform for hackers. The platform is designed with hacker user-interaction and deception in mind enabling researchers to gather data on the techniques and practices of hackers. To this end, we developed a fully extendable gamification architecture allowing researchers to deploy virtualised hosts on the internet. Each virtualised hosts contains a specific vulnerability (i.e. web application, software, etc). Each vulnerability is connected to a game engine, an interaction engine and a scoring engine

    Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3 / SrRuO3 bilayers

    Full text link
    Epitaxial La0.67Sr0.33MnO3 (LSMO)/ SrRuO3 (SRO) ferromagnetic bilayers have been grown on (001) SrTiO3 (STO) substrates by pulsed laser deposition with atomic layer control. We observe a shift in the magnetic hysteresis loop of the LSMO layer in the same direction as the applied biasing field (positive exchange bias). The effect is not present above the Curie temperature of the SRO layer (), and its magnitude increases rapidly as the temperature is lowered below . The direction of the shift is consistent with an antiferromagnetic exchange coupling between the ferromagnetic LSMO layer and the ferromagnetic SRO layer. We propose that atomic layer charge transfer modifies the electronic state at the interface, resulting in the observed antiferromagnetic interfacial exchange coupling.Comment: accepted to Applied Physics Letter
    corecore