55 research outputs found

    Hydrogen Bond Dynamics Near A Micellar Surface: Origin of the Universal Slow Relaxation at Complex Aqueous Interfaces

    Full text link
    The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than a hundred picosecond. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5kcal/mole.Comment: 12 pages. Phys. Rev. Lett. (Accepted) (2002

    Origin of line broadening in the electronic absorption spectra of conjugated polymers: Three-pulse-echo studies of MEH-PPV in toluene

    Get PDF
    Integrated three-pulse stimulated echo peak shift data are compared for N,N-bis-dimethylphenyl-1-2,4,6,8-perylenetetracarbonyl diamide and poly[2-(2'-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene] (MEH-PPV) in toluene solvent. These two molecules represent a model probe of solvation dynamics and a prototypical soluble, electroluminescent conjugated polymer, respectively. The results indicate that it is inappropriate to describe the linear absorption spectrum of MEH-PPV as being primarily inhomogeneously broadened. Conformational disorder along the polymer backbone gives rise to an ensemble of polyene electronic oscillators that are strongly coupled to each other. As a consequence, fluctuations in the electronic energy gap on a time-scale of 50-fs derive primarily from bath-mediated exciton scattering. The data reported here provide an explanation for the broad, structureless electronic absorption of MEH-PPV. This interpretation provides a valuable insight into the nature of the initial photoexcited state, and the efficient population of the emissive state

    Aqueous solvation dynamics studied by photon echo spectroscopy

    No full text
    Three-pulse photon echo peak shift measurements were employed to study aqueous solvation dynamics. A new perspective of dielectric continuum theory ͓X. Song and D. Chandler, J. Chem. Phys. 108, 2594 ͑1998͔͒ aided in characterizing the system-bath interactions of eosin in water. Application of this theory provides solvation energies, which were used within the spectral density representation ͑͒, to calculate the experimental peak shift. Simulations with only solvation contributions to ͑͒, where a substantial amplitude of the solvation occurs within ϳ30 fs, are remarkably consistent with our data. Furthermore, simulations using this theoretical solvation spectral density and an experimentally determined intramolecular spectral density yield an excellent total simulation of the peak shift data over the entire dynamic range. Our experimental results substantiate predictions that interaction-induced polarizability effects, contributing via a ϳ180 cm Ϫ1 band in the spectral density, influence the initial dynamics

    Residual normal stem cells can be detected in newly diagnosed chronic myeloid leukemia patients by a new flow cytometric approach and predict for optimal response to imatinib

    No full text
    Insensitivity of chronic myeloid leukemia (CML) hematopoietic stem cells to tyrosine kinase inhibitors (TKIs) prevents eradication of the disease and may be involved in clinical resistance. For improved treatment results more knowledge about CML stem cells is needed. We here present a new flow cytometric approach enabling prospective discrimination of CML stem cells from their normal counterparts within single-patient samples. In 24 of 40 newly diagnosed CML patients residual normal CD34(+)CD38(-) stem cells could be identified by lower CD34 and CD45 expression, lower forward/sideward light scatter and by differences of lineage marker expression (CD7, CD11b and CD56) and of CD90. fluorescent in situ hybridization (FISH) analysis on Fluorescence-activated cell sorting sorted cells proved that populations were BCR-ABL positive or negative and long-term liquid culture assays with subsequent colony forming unit assays and FISH analysis proved their stem cell character. Patients with residual non-leukemic stem cells had lower clinical risk scores (Sokal, Euro), lower hematological toxicity of imatinib (IM) and better molecular responses to IM than patients without. This new approach will expand our possibilities to separate CML and normal stem cells, present in a single bone marrow or peripheral blood sample, thereby offering opportunities to better identify new CML stem-cell-specific targets. Moreover, it may guide optimal clinical CML management
    corecore