39 research outputs found

    A Novel Fluorescent Imaging Agent for Diffuse Optical Tomography of the Breast: First Clinical Experience in Patients

    Get PDF
    Purpose: This is the first clinical evaluation of a novel fluorescent imaging agent (Omocianine) for breast cancer detection with diffuse optical tomography (DOT). Procedures: Eleven women suspected of breast cancer were imaged with DOT at multiple time points (up to 24 h) after receiving an intravenous injection of Omocianine (doses 0.01 to 0.1 mg/kg bodyweight). Breast MRI was obtained for comparison. Results: Histopathology showed invasive cancer in ten patients and fibroadenoma in one patient. With the lowest dose of Omocianine, two of three lesions were detected; with the second dose, three of three lesions were detected; with the two highest doses, none of five lesions were detected. Lesion location on DOT showed excellent agreement with MRI. Optimal lesion-tobackground signals were obtained after 8 h. No adverse events occurred. Conclusions: Lowest doses of Omocianine performed best in lesion detection; DOT using a lowdose fluorescent agent is feasible and safe for breast cancer visualization in patients

    A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions

    Get PDF
    Introduction: Characterizing and differentiating between malignant tumors, benign tumors, and normal breast tissue is increasingly important in the patient presenting with breast problems. Near-infrared diffuse optical imaging and spectroscopy is capable of measuring multiple physiologic parameters of biological tissue systems and may have clinical applications for assessing the development and progression of neoplastic processes, including breast cancer. The currently available application of near-infrared imaging technology for the breast, however, is compromised by low spatial resolution, tissue heterogeneity, and interpatient variation. Materials and methods: We tested a dynamic near-infrared imaging schema for the characterization of suspicious breast lesions identified on diagnostic clinical ultrasound. A portable handheld near-infrared tissue imaging device (P-Scan; ViOptix Inc., Fremont, CA, USA) was utilized. An external mechanical compression force was applied to breast tissue. The tissue oxygen saturation and hemoglobin concentration were recorded simultaneously by the handheld near-infrared imaging device. Twelve categories of dynamic tissue parameters were derived based on real-time measurements of the tissue hemoglobin concentration and the oxygen saturation. Results: Fifty suspicious breast lesions were evaluated in 48 patients. Statistical analyses were carried out on 36 out of 50 datasets that satisfied our inclusion criteria. Suspicious breast lesions identified on diagnostic clinical ultrasound had lower oxygenation and higher hemoglobin concentration than the surrounding normal breast tissue. Furthermore, histopathologic-proven malignant breast tumors had a lower differential hemoglobin contrast (that is, the difference of hemoglobin concentration variability between the suspicious breast lesion and the normal breast parenchyma located remotely elsewhere within the ipsilateral breast) as compared with histopathologic-proven benign breast lesions. Conclusion: The proposed dynamic near-infrared imaging schema has the potential to differentiate benign processes from those of malignant breast tumors. Further development and refinement of the dynamic imaging device and additional subsequent clinical testing are necessary for optimizing the accuracy of detection

    Predicting Breast Cancer Response to Neoadjuvant Chemotherapy Using Pretreatment Diffuse Optical Spectroscopic-Texture Analysis

    Get PDF
    Purpose: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pre-treatment DOS functional maps for predicting LABC response to NAC. Methods: LABC patients (n = 37) underwent DOS-breast imaging before starting neoadjuvant chemotherapy. Breast-tissue parametric maps were constructed and texture analyses were performed based on grey level co-occurrence matrices (GLCM) for feature extraction. Ground-truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS-textural features computed on volumetric tumour data before the start of treatment (i.e. “pre-treatment”) to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naïve Bayes, and k-nearest neighbour (k-NN) classifiers. Results: Data indicated that textural characteristics of pre-treatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2-homogeneity resulted in the highest accuracy amongst univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5 and 89.0%, respectively and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-Contrast + HbO2-Homogeneity which resulted in a %Sn/%Sp = 78.0/81.0% and an accuracy of 79.5%. Conclusions: This study demonstrated that pre-treatment tumour DOS-texture features can predict breast cancer response to NAC and potentially guide treatments

    In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography

    Full text link

    Time-resolved diffuse optical tomography with patternedlight illumination and detection

    No full text
    Abstract: We experimentally demonstrate that time-resolved measurements of broad spatial patterns transmitted through an optically heterogeneous medium retain their temporal characteristics providing robust signals for efficient decoupling of optical properties and allowing fast quantitative high-resolution reconstruction. ©2010 Optical Society of America OCIS codes: (170.6920) Time-resolved imaging; (110.0113) Imaging through turbid medi
    corecore