39,022 research outputs found

    Spectroscopic Observations of Planetary Nebulae in the Northern Spur of M31

    Get PDF
    We present spectroscopy of three planetary nebulae (PNe) in the Northern Spur of the Andromeda Galaxy (M31) obtained with the Double Spectrograph on the 5.1 m Hale Telescope at the Palomar Observatory. The samples are selected from the observations of Merrett et al. Our purpose is to investigate formation of the substructures of M31 using PNe as a tracer of chemical abundances. The [O III] 4363 auroral line is detected in the spectra of two objects, enabling temperature determinations. Ionic abundances are derived from the observed collisionally excited lines, and elemental abundances of nitrogen, oxygen, and neon as well as sulphur and argon are estimated. Correlations between oxygen and the alpha-element abundance ratios are studied, using our sample and the M31 disk and bulge PNe from the literature. In one of the three PNe, we observed relatively higher oxygen abundance compared to the disk sample in M31 at similar galactocentric distances. The results of at least one of the three Northern Spur PNe might be in line with the proposed possible origin of the Northern Spur substructure of M31, i.e. the Northern Spur is connected to the Southern Stream and both substructures comprise the tidal debris of the satellite galaxies of M31.Comment: 5 tables, 17 figures; accepted for publication in Ap

    Overview of charmonium decays and production from Non-Relativistic QCD

    Full text link
    I briefly review Non-Relativistic QCD and related effective theories, and discuss applications to heavy quarkonium decay, and production in electron-positron colliders.Comment: 8 pages, Invited talk at Charm 2010, Oct. 21-24, IHEP, Beijin

    The radial abundance gradient of oxygen towards the Galactic anticentre

    Get PDF
    We present deep optical spectroscopy of eight HII regions located in the anticentre of the Milky Way. The spectra were obtained at the 10.4m GTC and 8.2m VLT. We determined Te([NII]) for all objects and Te([OIII]) for six of them. We also included in our analysis an additional sample of 13 inner-disc Galactic Hii regions from the literature that have excellent T_e determinations. We adopted the same methodology and atomic dataset to determine the physical conditions and ionic abundances for both samples. We also detected the CII and OII optical recombination lines in Sh 2-100, which enables determination of the abundance discrepancy factor for this object. We found that the slopes of the radial oxygen gradients defined by the HII regions from R_25 (= 11.5 kpc) to 17 kpc and those within R_25 are similar within the uncertainties, indicating the absence of flattening in the radial oxygen gradient in the outer Milky Way. In general, we found that the scatter of the O/H ratios of Hii regions is not substantially larger than the observational uncertainties. The largest possible local inhomogeneities of the oxygen abundances are of the order of 0.1 dex. We also found positive radial gradients in Te([O III]) and Te([N II]) across the Galactic disc. The shapes of these temperature gradients are similar and also consistent with the absence of flattening of the metallicity distribution in the outer Galactic disc.Comment: 20 pages, 11 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis

    Get PDF
    In the present work we study the production of vector resonances at the LHC by means of the vector boson scattering WZ→WZWZ \to WZ and explore the sensitivities to these resonances for the expected future LHC luminosities. We are assuming that these vector resonances are generated dynamically from the self interactions of the longitudinal gauge bosons, WLW_L and ZLZ_L, and work under the framework of the electroweak chiral Lagrangian to describe in a model independent way the supposedly strong dynamics of these modes. The properties of the vector resonances, mass, width and couplings to the WW and ZZ gauge bosons are derived from the inverse amplitude method approach. We implement all these features into a single model, the IAM-MC, adapted for MonteCarlo, built in a Lagrangian language in terms of the electroweak chiral Lagrangian and a chiral Lagrangian for the vector resonances, which mimics the resonant behavior of the IAM and provides unitary amplitudes. The model has been implemented in MadGraph, allowing us to perform a realistic study of the signal versus background events at the LHC. In particular, we have focused our study on the pp→WZjjpp\to WZjj type of events, discussing first on the potential of the hadronic and semileptonic channels of the final WZWZ, and next exploring in more detail the clearest signals. These are provided by the leptonic decays of the gauge bosons, leading to a final state with ℓ1+ℓ1−ℓ2+νjj\ell_1^+\ell_1^-\ell_2^+\nu jj, ℓ=e,μ\ell=e,\mu, having a very distinctive signature, and showing clearly the emergence of the resonances with masses in the range of 1.5-2.5 TeV, which we have explored.Comment: Revised version accepted for publication in JHEP. Enlarged analysis. References added. 44 pages, 23 figures, 3 table

    Cosmological Effects of Nonlinear Electrodynamics

    Full text link
    It will be shown that a given realization of nonlinear electrodynamics, used as source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way to solve two important problems in cosmology
    • …
    corecore