953 research outputs found

    Transport inefficiency in branched-out mesoscopic networks: An analog of the Braess paradox

    Full text link
    We present evidence for a counter-intuitive behavior of semiconductor mesoscopic networks that is the analog of the Braess paradox encountered in classical networks. A numerical simulation of quantum transport in a two-branch mesoscopic network reveals that adding a third branch can paradoxically induce transport inefficiency that manifests itself in a sizable conductance drop of the network. A scanning-probe experiment using a biased tip to modulate the transmission of one branch in the network reveals the occurrence of this paradox by mapping the conductance variation as a function of the tip voltage and position.Comment: 2nd version with minor stylistic corrections. To appear in Phys. Rev. Lett.: Editorially approved for publication 6 January 201

    First-principles study of the phonon-limited mobility in n-type single-layer MoS2

    Get PDF
    In the present work we calculate the phonon-limited mobility in intrinsic n-type single-layer MoS2 as a function of carrier density and temperature for T > 100 K. Using a first-principles approach for the calculation of the electron-phonon interaction, the deformation potentials and Fr\"ohlich interaction in the isolated MoS2 layer are determined. We find that the calculated room-temperature mobility of ~410 cm^2 V^-1 s^-1 is dominated by optical phonon scattering via deformation potential couplings and the Fr\"ohlich interaction with the deformation potentials to the intravalley homopolar and intervalley longitudinal optical phonons given by 4.1 x 10^8 eV/cm and 2.6 x 10^8 eV/cm, respectively. The mobility is weakly dependent on the carrier density and follows a \mu ~ T^-1 temperature dependence with \gamma = 1.69 at room temperature. It is shown that a quenching of the characteristic homopolar mode which is likely to occur in top-gated samples, boosts the mobility with 70 cm^2 V^-1 s^-1 and can be observed as a decrease in the exponent to \gamma = 1.52. Our findings indicate that the intrinsic phonon-limited mobility is approached in samples where a high-kappa dielectric that effectively screens charge impurities is used as gate oxide.Comment: Submitted to Phys. Rev.

    Slow stress relaxation in randomly disordered nematic elastomers and gels

    Full text link
    Randomly disordered (polydomain) liquid crystalline elastomers align under stress. We study the dynamics of stress relaxation before, during and after the Polydomain-Monodomain transition. The results for different materials show the universal ultra-slow logarithmic behaviour, especially pronounced in the region of the transition. The data is approximated very well by an equation Sigma(t) ~ Sigma_{eq} + A/(1+ Alpha Log[t]). We propose a theoretical model based on the concept of cooperative mechanical resistance for the re-orientation of each domain, attempting to follow the soft-deformation pathway. The exact model solution can be approximated by compact analytical expressions valid at short and at long times of relaxation, with two model parameters determined from the data.Comment: 4 pages (two-column), 5 EPS figures (included via epsfig

    Photon Management in Two-Dimensional Disordered Media

    Full text link
    Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly-textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists in the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a novel approach for high-extraction efficiency light-emitting diodes

    Engineering of a complex bone tissue model with endothelialised channels and capillary-like networks

    Get PDF
    In engineering of tissue analogues, upscaling to clinically-relevant sized constructs remains a significant challenge. The successful integration of a vascular network throughout the engineered tissue is anticipated to overcome the lack of nutrient and oxygen supply to residing cells. This work aimed at developing a multiscale bone-tissue-specific vascularisation strategy. Engineering pre-vascularised bone leads to biological and fabrication dilemmas. To fabricate channels endowed with an endothelium and suitable for osteogenesis, rather stiff materials are preferable, while capillarisation requires soft matrices. To overcome this challenge, gelatine-methacryloyl hydrogels were tailored by changing the degree of functionalisation to allow for cell spreading within the hydrogel, while still enabling endothelialisation on the hydrogel surface. An additional challenge was the combination of the multiple required cell-types within one biomaterial, sharing the same culture medium. Consequently, a new medium composition was investigated that simultaneously allowed for endothelialisation, capillarisation and osteogenesis. Integrated multipotent mesenchymal stromal cells, which give rise to pericyte-like and osteogenic cells, and endothelial-colony-forming cells (ECFCs) which form capillaries and endothelium, were used. Based on the aforementioned optimisation, a construct of 8 × 8 × 3 mm, with a central channel of 600 µm in diameter, was engineered. In this construct, ECFCs covered the channel with endothelium and osteogenic cells resided in the hydrogel, adjacent to self-assembled capillary-like networks. This study showed the promise of engineering complex tissue constructs by means of human primary cells, paving the way for scaling-up and finally overcoming the challenge of engineering vascularised tissues

    Inelastic quantum transport in superlattices: success and failure of the Boltzmann equation

    Get PDF
    Electrical transport in semiconductor superlattices is studied within a fully self-consistent quantum transport model based on nonequilibrium Green functions, including phonon and impurity scattering. We compute both the drift velocity-field relation and the momentum distribution function covering the whole field range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear transport situation in the presence of inelastic scattering.Comment: final version with minor changes, to appear in Physical Review Letters, sceduled tentatively for July, 26 (1999

    Dissipative Chaos in Semiconductor Superlattices

    Full text link
    We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use the semi-classical balance-equation approach which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free electron lasers, chaos may be observable in SSLs. We clarify the nature of this novel nonlinear dynamics in the superlattice-external field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field and to Josephson junctions.Comment: 33 pages, 8 figure

    Influence of supramolecular forces on the linear viscoelasticity of gluten

    Get PDF
    Stress relaxation behavior of hydrated gluten networks was investigated by means of rheometry combined with μ-computed tomography (μ-CT) imaging. Stress relaxation behavior was followed over a wide temperature range (0–70 °C). Modulation of intermolecular bonds was achieved with urea or ascorbic acid in an effort to elucidate the presiding intermolecular interactions over gluten network relaxation. Master curves of viscoelasticity were constructed, and relaxation spectra were computed revealing three relaxation regimes for all samples. Relaxation commences with a well-defined short-time regime where Rouse-like modes dominate, followed by a power law region displaying continuous relaxation concluding in a terminal zone. In the latter zone, poroelastic relaxation due to water migration in the nanoporous structure of the network also contributes to the stress relief in the material. Hydrogen bonding between adjacent protein chains was identified as the determinant force that influences the relaxation of the networks. Changes in intermolecular interactions also resulted in changes in microstructure of the material that was also linked to the relaxation behavior of the networks

    Experimental evaluation of the pseudotime principle for nonisothermal polymer flows

    Get PDF
    We have applied a series of start-up of uniaxial extensions to very high strain followed by stress relaxation. A potential temperature change was applied during the stress relaxation. We used two thermorheological simple polymers; a linear polystyrene and a branched low density polyethylene. Experiments performed with temperature changes during the stress relaxation were shown to be identical with isothermal ones in the “pseudotime”, within the accuracy of the experiments. This verifies that the pseudotime approach seems to be the general basis for nonisothermal microstructural modeling for flow of polymers. The pseudotime is given as ξ(t) = ∫to 1/aT(T(t1))dT1, where aT are the well established time-temperature superposition shift factors, calculated from the past temperatures (at time t0) in a particle path
    corecore