76 research outputs found

    Pilot Study on Quantitative Cervical Cord and Muscular MRI in Spinal Muscular Atrophy: Promising Biomarkers of Disease Evolution and Treatment?

    Get PDF
    Introduction: Nusinersen is a recent promising therapy approved for the treatment of spinal muscular atrophy (SMA), a rare disease characterized by the degeneration of alpha motor neurons (αMN) in the spinal cord (SC) leading to progressive muscle atrophy and dysfunction. Muscle and cervical SC quantitative magnetic resonance imaging (qMRI) has never been used to monitor drug treatment in SMA. The aim of this pilot study is to investigate whether qMRI can provide useful biomarkers for monitoring treatment efficacy in SMA. Methods: Three adult SMA 3a patients under treatment with nusinersen underwent longitudinal clinical and qMRI examinations every 4 months from baseline to 21-month follow-up. The qMRI protocol aimed to quantify thigh muscle fat fraction (FF) and water-T2 (w-T2) and to characterize SC volumes and microstructure. Eleven healthy controls underwent the same SC protocol (single time point). We evaluated clinical and imaging outcomes of SMA patients longitudinally and compared SC data between groups transversally. Results: Patient motor function was stable, with only Patient 2 showing moderate improvements. Average muscle FF was already high at baseline (50%) and progressed over time (57%). w-T2 was also slightly higher than previously published data at baseline and slightly decreased over time. Cross-sectional area of the whole SC, gray matter (GM), and ventral horns (VHs) of Patients 1 and 3 were reduced compared to controls and remained stable over time, while GM and VHs areas of Patient 2 slightly increased. We found altered diffusion and magnetization transfer parameters in SC structures of SMA patients compared to controls, thus suggesting changes in tissue microstructure and myelin content. Conclusion: In this pilot study, we found a progression of FF in thigh muscles of SMA 3a patients during nusinersen therapy and a concurrent slight reduction of w-T2 over time. The SC qMRI analysis confirmed previous imaging and histopathological studies suggesting degeneration of αMN of the VHs, resulting in GM atrophy and demyelination. Our longitudinal data suggest that qMRI could represent a feasible technique for capturing microstructural changes induced by SMA in vivo and a candidate methodology for monitoring the effects of treatment, once replicated on a larger cohort

    Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically–relevant faecal environment, with implications for pathogenicity

    Get PDF
    Abstract Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility

    Inactivation of the dnaK gene in Clostridium difficile 630 Δerm yields a temperature-sensitive phenotype and increases biofilm-forming ability

    Get PDF
    Abstract Clostridium difficile infection is a growing problem in healthcare settings worldwide and results in a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibiotic resistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenging gut environment still remains incompletely understood. We previously reported that clinically relevant heat-stress (37–41 °C) resulted in a classical heat-stress response with up-regulation of cellular chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 Δerm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 Δerm and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50% longer than parental strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis

    A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells

    Get PDF
    Malaria parasites replicate within a parasitophorous vacuole in red blood cells (RBCs). Progeny merozoites egress upon rupture of first the parasitophorous vacuole membrane (PVM), then poration and rupture of the RBC membrane (RBCM). Egress is protease-dependent1, but none of the effector molecules that mediate membrane rupture have been identified and it is unknown how sequential rupture of the two membranes is controlled. Minutes before egress, the parasite serine protease SUB1 is discharged into the parasitophorous vacuole2,3,4,5,6 where it cleaves multiple substrates2,5,7,8,9 including SERA6, a putative cysteine protease10,11,12. Here, we show that Plasmodium falciparum parasites lacking SUB1 undergo none of the morphological transformations that precede egress and fail to rupture the PVM. In contrast, PVM rupture and RBCM poration occur normally in SERA6-null parasites but RBCM rupture does not occur. Complementation studies show that SERA6 is an enzyme that requires processing by SUB1 to function. RBCM rupture is associated with SERA6-dependent proteolytic cleavage within the actin-binding domain of the major RBC cytoskeletal protein β-spectrin. We conclude that SUB1 and SERA6 play distinct, essential roles in a coordinated proteolytic cascade that enables sequential rupture of the two bounding membranes and culminates in RBCM disruption through rapid, precise, SERA6-mediated disassembly of the RBC cytoskeleton

    Exploring the role of individual level and firm level dynamic capabilities in SMEs’ internationalization

    Get PDF
    This paper presents a multi-level model that examines the impact of dynamic capabilities on the internationalization of SMEs while taking into account the interactions among them. The purpose of the research is to understand the applicability of dynamic capabilities at the individual and the firm level to the SME internationalization process in developing country context and to assess to what extent a firm’s asset position and individual level dynamic capabilities influence the generation of firm level dynamic capabilities in SMEs. First, the dynamic capabilities theory was theoretically linked to the internationalization phenomenon. The relationships among firm-level dynamic capabilities, individual-level dynamic capabilities (owner specific dynamic capabilities), and internationalization were identified. The research framework and hypotheses were developed and empirically tested with 197 SMEs. The findings established that owner-specific dynamic capabilities have a positive influence on both firm dynamic capabilities and internationalization, and firm dynamic capabilities positively influence internationalization. It was also found that the market assets position measured as perceptual environmental dynamism positively influenced firm dynamic capabilities but structural and reputational asset positions of SMEs did not influence generation of firm dynamic capabilities. Moreover, firm dynamic capabilities had a mediation effect in the relationship between owner-specific dynamic capabilities and internationalization. Theoretically, this confirms the relevance of dynamic capability theory to internationalization and the possibility of integrating existing internationalization theories. Entrepreneurs, SME managers, and policy-makers could gain valuable insights on how entrepreneur and firm capabilities lead to better international prospects from this outcome

    Dynamic MRI of plantar flexion: A comprehensive repeatability study of electrical stimulation-gated muscle contraction standardized on evoked force.

    Get PDF
    Quantification of skeletal muscle contraction in Magnetic Resonance Imaging (MRI) is a non-invasive method for studying muscle motion and deformation. The aim of this study was to evaluate the repeatability of quantitative measures such as strain, based on single slice dynamic MRI synchronized with neuromuscular electrical stimulation (NMES) and standardized to a similar relative force level across various individuals. Unilateral electrical stimulation of the triceps surae muscles was applied in eight volunteers during single-slice, three-directional phase contrast MRI acquisition at a 3T MRI scanner. To assess repeatability, the same process was executed on two different days by standardizing the stimulation aiming at evoking a fixed percentage of their maximal voluntary force in the same position. Except from the force, the effect of using the current as reference was evaluated on day two as a secondary acquisition. Finally, the presence of fatigue induced by NMES was assessed (on day one) by examining the difference between consecutive measurements. Strain maps were derived from the acquired slice at every time point; distribution of strain in the muscle and peak strain over the muscle of interest were evaluated for repeatability. It was found that fatigue did not have an appreciable effect on the results. The stimulation settings based on evoked force produced more repeatable results with respect to using the current as the only reference, with an intraclass correlation coefficient between different days of 0.95 for the former versus 0.88 for the latter. In conclusion, for repeatable strain imaging it is advisable to record the force output of the evoked contraction and use that for the standardization of the NMES setup rather than the current
    corecore