61,967 research outputs found

    Dynamics of multiply charged ions in intense laser fields

    Get PDF
    We numerically investigate the dynamics of multiply charged hydrogenic ions in near-optical linearly polarized laser fields with intensities of order 10^16 to 10^17 W/cm^2. Depending on the charge state Z of the ion the relation of strength between laser field and ionic core changes. We find around Z=12 typical multiphoton dynamics and for Z=3 tunneling behaviour, however with clear relativistic signatures. In first order in v/c the magnetic field component of the laser field induces a Z-dependent drift in the laser propagation direction and a substantial Z-dependent angular momentum with repect to the ionic core. While spin oscillations occur already in first order in v/c as described by the Pauli equation, spin induced forces via spin orbit coupling only appear in the parameter regime where (v/c)^2 corrections are significant. In this regime for Z=12 ions we show strong splittings of resonant spectral lines due to spin-orbit coupling and substantial corrections to the conventional Stark shift due to the relativistic mass shift while those to the Darwin term are shown to be small. For smaller charges or higher laser intensities, parts of the electronic wavepacket may tunnel through the potential barrier of the ionic core, and when recombining are shown to give rise to keV harmonics in the radiation spectrum. Some parts of the wavepacket do not recombine after ionisation and we find very energetic electrons in the weakly relativistic regime of above threshold ionization.Comment: submitte

    Numerical Study of Universal Conductance Fluctuation in Three-dimensional Topological Semimetals

    Full text link
    We study the conductance fluctuation in topological semimetals. Through statistic distribution of energy levels of topological semimetals, we determine the dominant parameters of universal conductance fluctuation (UCF), i.e., the number of uncorrelated bands kk, the level degeneracy ss, and the symmetry parameter β\beta. These parameters allow us to predict the zero-temperature intrinsic UCF of topological semimetals by the Altshuler-Lee-Stone theory. Then, we obtain numerically the conductance fluctuations for topological semimetals of quasi-1D geometry. We find that for Dirac/Weyl semimetals, the theoretical prediction coincides with the numerical results. However, a non-universal conductance fluctuation behavior is found for topological nodal line semimetals, i.e., the conductance fluctuation amplitude increases with the enlargement of SOC strength. We find that such unexpected parameter-dependent phenomena of conductance fluctuation are related to Fermi surface shape of 3D topological semimetals. These results will help us to understand the existing and future experimental results of UCF in 3D topological semimetals.Comment: 9 pages, 8 figure

    Coherent population trapping in a dressed two-level atom via a bichromatic field

    Full text link
    We show theoretically that by applying a bichromatic electromagnetic field, the dressed states of a monochromatically driven two-level atom can be pumped into a coherent superposition termed as dressed-state coherent population trapping. Such effect can be viewed as a new doorknob to manipulate a two-level system via its control over dressed-state populations. Application of this effect in the precision measurement of Rabi frequency, the unexpected population inversion and lasing without inversion are discussed to demonstrate such controllability.Comment: 14 pages, 6 figure

    Particle-continuum-medium duality of skyrmions

    Full text link
    Topological solitons are crucial to many branches of physics, such as models of fundamental particles in quantum field theory, information carriers in nonlinear optics, and elementary entities in quantum and classical computations. Chiral magnetic materials are a fertile ground for studying solitons. In the past a few years, a huge number of all kinds of topologically protected localized magnetic solitons have been found. The number is so large, and a proper organization and classification is necessary for their future developments. Here we show that many topological magnetic solitons can be understood from the duality of particle and elastic continuum-medium nature of skyrmions. In contrast to the common belief that a skyrmion is an elementary particle that is indivisible, skyrmions behave like both particle and continuum media that can be tore apart to bury other objects, reminiscing particle-wave duality in quantum mechanics. Skyrmions, like indivisible particles, can be building blocks for cascade skyrmion bags and target skyrmions. They can also act as bags and glues to hold one or more skyrmions together. The principles and rules for stable composite skyrmions are explained and presented, revealing their rich and interesting physics.Comment: 14 pages, 8 figure

    Bicritical and tetracritical phenomena and scaling properties of the SO(5) theory

    Full text link
    By large scale Monte Carlo simulations it is shown that the stable fixed point of the SO(5) theory is either bicritical or tetracritical depending on the effective interaction between the antiferromagnetism and superconductivity orders. There are no fluctuation-induced first-order transitions suggested by epsilon expansions. Bicritical and tetracritical scaling functions are derived for the first time and critical exponents are evaluated with high accuracy. Suggestions on experiments are given.Comment: 11 pages, 8 postscript figures, Revtex, revised versio

    Analytical Solution of Electron Spin Decoherence Through Hyperfine Interaction in a Quantum Dot

    Full text link
    We analytically solve the {\it Non-Markovian} single electron spin dynamics due to hyperfine interaction with surrounding nuclei in a quantum dot. We use the equation-of-motion method assisted with a large field expansion, and find that virtual nuclear spin flip-flops mediated by the electron contribute significantly to a complete decoherence of transverse electron spin correlation function. Our results show that a 90% nuclear polarization can enhance the electron spin T2T_2 time by almost two orders of magnitude. In the long time limit, the electron spin correlation function has a non-exponential 1/t21/t^2 decay in the presence of both polarized and unpolarized nuclei.Comment: 4 pages, 3 figure

    Instabilities at [110] Surfaces of d_{x^2-y^2} Superconductors

    Full text link
    We compare different scenarios for the low temperature splitting of the zero-energy peak in the local density of states at (110) surfaces of d_{x^2-y^2}-wave superconductors, observed by Covington et al. (Phys.Rev.Lett.79 (1997), 277). Using a tight binding model in the Bogolyubov-de Gennes treatment we find a surface phase transition towards a time-reversal symmetry breaking surface state carrying spontaneous currents and an s+id-wave state. Alternatively, we show that electron correlation leads to a surface phase transition towards a magnetic state corresponding to a local spin density wave state.Comment: 4 pages, 5 figure
    • …
    corecore