101 research outputs found

    A systematic review of classification systems for pilonidal sinus

    Get PDF
    Background Pilonidal sinus disease (PSD) is a simple chronic inflammatory condition resulting from loose hairs forcibly inserted into vulnerable tissue in the natal cleft. It is an acquired disease with a slight familial tendency. There is no agreement on optimum treatment and the multitude of therapeutic options cannot be compared due to the lack of a universally adopted classification of the disease. The aim of our study was to perform a systematic review of the literature to determine how presentations of PSD are classified and reported. Methods A systematic review of the English language literature was undertaken searching studies published after 1980. Results Eight classification systems of PSD were identified. Most classification systems were based on anatomical pathology hypotheses. The location and number of sinuses were the main factors defining classification systems. No articles were retrieved that assessed the validity and/or reliability of the classification system employed. Furthermore, there was no evidence to suggest a correlation between prognosis outcome and subgroup. Conclusions Based on the evidence available from the literature reviewed we have no recommendations regarding the use of the current classification of PSD. A well-recognised and practical classification system to guide clinical practice is required

    Research and practice priorities in pilonidal sinus disease: a consensus from the PITSTOP study

    Get PDF
    Aim Pilonidal sinus disease is a common condition treated by colorectal surgeons. There is a lack of literature in the field to guide optimal management of this condition. As part of the PITSTOP study, we aimed to identify policy and research priorities to provide direction to the field. Method Patients and surgeons were invited to participate. A ‘So what, now what’ exercise was conducted, informed by data from PITSTOP. This generated statements for research and practice priorities. A three-round online Delphi study was conducted, ranking statements based on policy and research separately. Statements were rated 1 (not important) to 9 (important). Statements that were rated 7–9 by more than 70% of participants were entered into the consensus meeting. Personalized voting feedback was shown between rounds. A face-to-face meeting was held to discuss statements, and participants were asked to rank statements using a weighted choice vote. Results Twenty-two people participated in the focus group, generating 14 research and 19 policy statements. Statements were voted on by 56 participants in round 1, 53 in round 2 and 51 in round 3. A total of 15 policy statements and 19 research statements were discussed in the consensus round. Key policy statements addressed treatment strategies and intensity, surgeon training opportunities, need for classification and the impact of treatment on return to work. Research recommendations included design of future trials, methodology considerations and research questions. Conclusion This study has identified research and policy priorities in pilonidal sinus disease which are relevant to patients and clinicians. These should inform practice and future research

    Classification and stratification in pilonidal sinus disease: findings from the PITSTOP cohort

    Get PDF
    Aim Research in pilonidal disease faces several challenges, one of which is consistent and useful disease classification. The International Pilonidal Society (IPS) proposed a four-part classification in 2017. The aim of this work was to assess the validity and reliability of this tool using data from the PITSTOP cohort study. Method Face validity was assessed by mapping the items/domains in the IPS tool against tools identified through a systematic review. Key concepts were defined as those appearing in more than two-thirds of published tools. Concurrent and predictive validity were assessed by comparing key patient-reported outcome measures between groups at baseline and at clinic visit. The outcomes of interest were health utility, Cardiff Wound Impact Questionnaire (CWIQ) and pain score between groups. Significance was set at p = 0.05 a priori. Interrater reliability was assessed using images captured during the PITSTOP cohort. Ninety images were assessed by six raters (two experts, two general surgeons and two trainees), and classified into IPS type. Interrater reliability was assessed using the unweighted kappa and unweighted Gwet's AC1 statistics. Results For face validity items represented in the IPS were common to other classification systems. Concurrent and predictive validity assessment showed differences in health utility and pain between groups at baseline, and for some treatment groups at follow-up. Assessors agreed the same classification in 38% of participants [chance-corrected kappa 0.52 (95% CI 0.42–0.61), Gwet's AC1 0.63 (95% CI 0.56–0.69)]. Conclusion The IPS classification demonstrates key aspects of reliability and validity that would support its implementation

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∌40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∌2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr

    GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object

    Get PDF
    We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45 41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to ïżœ0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries
    • 

    corecore