17 research outputs found

    Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling

    Get PDF
    Obesity and diabetes are well-known risk factors for the development of endometrial cancer. A high rate of aerobic glycolysis represents a key mechanism by which endometrial cancer cells consume glucose as its primary energy source. The up-regulated glycolytic pathway is a common therapeutic target whose inhibition has implications for anti-tumor activity in cancer cells. This study aimed to investigate the effect of various concentrations of glucose on cell proliferation in endometrial cancer

    Knockdown of hTERT and Treatment with BIBR1532 Inhibit Cell Proliferation and Invasion in Endometrial Cancer Cells

    Get PDF
    Telomerase activity and expression of the catalytic protein hTERT are associated with cell proliferation and advanced stage in endometrial cancer. Our objective was to evaluate the effect of inhibition of hTERT by siRNA and BIBR1532 on cell growth, apoptosis and invasion in endometrial cancer cells. Knockdown of hTERT or treatment of the cells with BIBR1532 decreased telomerase activity, inhibited cell proliferation, induced apoptosis, and reduced cell invasion in Ishikawa and ECC-1 cells. Either hTERT siRNA or BIBR1532 in combination with paclitaxel promoted a synergistic inhibitory effect on cell growth through induction of Annexin V expression and a remarkable reduction in cell invasion through reduction of protein expression of MMP9, MMP2, and MMP3. Increased telomerase activity and hTERT protein expression by transfections enhanced the protein expression of MMPs and increased the cell invasion ability. BIBR1532 significantly antagonized cell invasion induced by increased hTERT expression. These findings suggest that telomerase and hTERT facilitate cell invasion via MMP family in human endometrial cancer cells

    <html>Increased efficacy of metformin corresponds to differential metabolic effects in the ovarian tumors from obese <i>versus</i> lean mice</html>

    Get PDF
    Obesity is a significant risk factor for ovarian cancer (OC) and associated with worse outcomes for this disease. We assessed the anti-tumorigenic effects of metformin in human OC cell lines and a genetically engineered mouse model of high grade serous OC under obese and lean conditions. Metformin potently inhibited growth in a dose-dependent manner in all four human OC cell lines through AMPK/mTOR pathways. Treatment with metformin resulted in G1 arrest, induction of apoptosis, reduction of invasion and decreased hTERT expression. In the K18-gT121+/-; p53fl/fl; Brca1fl/fl (KpB) mouse model, metformin inhibited tumor growth in both lean and obese mice. However, in the obese mice, metformin decreased tumor growth by 60%, whereas tumor growth was only decreased by 32% in the lean mice (p=0.003) compared to vehicle-treated mice. The ovarian tumors from obese mice had evidence of impaired mitochondrial complex 2 function and energy supplied by omega fatty acid oxidation rather than glycolysis as compared to lean mice, as assessed by metabolomic profiling. The improved efficacy of metformin in obesity corresponded with inhibition of mitochondrial complex 1 and fatty acid oxidation, and stimulation of glycolysis in only the OCs of obese versus lean mice. In conclusion, metformin had anti-tumorigenic effects in OC cell lines and the KpB OC pre-clinical mouse model, with increased efficacy in obese versus lean mice. Detected metabolic changes may underlie why ovarian tumors in obese mice have heightened susceptibility to metformin

    Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule

    Get PDF
    Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges

    BRCAness Profile of Sporadic Ovarian Cancer Predicts Disease Recurrence

    Get PDF
    BACKGROUND:The consequences of defective homologous recombination (HR) are not understood in sporadic ovarian cancer, nor have the potential role of HR proteins other than BRCA1 and BRCA2 been clearly defined. However, it is clear that defects in HR and other DNA repair pathways are important to the effectiveness of current therapies. We hypothesize that a subset of sporadic ovarian carcinomas may harbor anomalies in HR pathways, and that a BRCAness profile (defects in HR or other DNA repair pathways) could influence response rate and survival after treatment with platinum drugs. Clinical availability of a BRCAness profile in patients and/or tumors should improve treatment outcomes. OBJECTIVE:To define the BRCAness profile of sporadic ovarian carcinoma and determine whether BRCA1, PARP, FANCD2, PTEN, H2AX, ATM, and P53 protein expression correlates with response to treatment, disease recurrence, and recurrence-free survival. MATERIALS AND METHODS:Protein microarray analysis of ovarian cancer tissue was used to determine protein expression levels for defined DNA repair proteins. Correlation with clinical and pathologic parameters in 186 patients with advanced stage III-IV and grade 3 ovarian cancer was analyzed using Chi square, Kaplan-Meier method, Cox proportional hazard model, and cumulative incidence function. RESULTS:High PARP, FANCD2 and BRCA1 expressions were significantly correlated with each other; however, elevated p53 expression was associated only with high PARP and FANCD2. Of all patients, 9% recurred within the first year. Among early recurring patients, 41% had high levels of PARP, FANCD2 and P53, compared to 19.5% of patients without early recurrence (p = 0.04). Women with high levels of PARP, FANCD2 and/or P53 had first year cumulative cancer incidence of 17% compared with 7% for the other groups (P = 0.03). CONCLUSIONS:Patients with concomitantly high levels of PARP, FANCD2 and P53 protein expression are at increased risk of early ovarian cancer recurrence and platinum resistance

    Associations of PARP and/or FANCD2 with P53.

    No full text
    <p>Association between PARP, FANCD2, and P53. Patients with positive PARP or positive FANCD2 were more likely to have positive P53. Patients positive for both PARP and FANCD2 were statistically more likely to stain positive for P53.</p
    corecore