14 research outputs found

    EXOPEPTIDASE CATALYZED SITE-SPECIFIC BONDING OF SUPPORTS, LABELS AND BIOACTIVE AGENTS TO PROTEINS

    Get PDF
    The invention provides a means for attaching a label, support or bioactive agent to a protein with an exopeptidase at a site that is remote from the active site of the protein. More specifically the invention is directed to a method for the attachment of an amino acid, amine and alcohol nucleophile to the carboxyl terminus of a protein. In one embodiment, a labeled nucleophile is attached to a protein such as an antibody. In other embodiments, the invention is directed to a method for the attachment of a protein to an immobilization support and to a method for the attachment of a bioactive agent to a protein

    EXOPEPTIDASE CATALYZED SITE-SPECIFIC BONDING OF SUPPORTS, LABELS AND BIOACTIVE AGENTS TO PROTEINS

    Get PDF
    An auxiliary substance such as a label, support, or bioactive agent is attached to a protein at a site that is remote from the active site of the protein by the use of exopeptidase and a nucleophile which is an amino acid, amino acid derivative, amine or alcohol. In one embodiment, the nucleophile is attached to the carboxy terminus of a protein by catalysis with exopeptidase to form an adduct and then the adduct or its combination with a linker arm is bound to the auxiliary substance. In another embodiment, the auxiliary substance or its combination with a linker arm is bound to the nucleophile to form an intermediate substance which is then coupled by catalysis with exopeptidase to the carboxy terminus of a protein

    Monoclonal antibodies specific for mercuric ions

    Get PDF
    Monoclonal antibodies (mAbs) that react with soluble mercuric ions have been produced by i \u27ection of BALB/c mice with a hapten-carrier complex designed to maximize exposure of the metal to the immune system. Three hybridomas producing antibodies that reacted with bovine serum albumin (BSA)-glutathione-HgCI, but not with BSAglutathione, were isolated from the spleen of a mouse given multiple iqjections with glutathione-HgCl conjugated to keyhole limpet hemocyanin. Stable subclones were established from two of these antibodies, designated mAb 4A10 and mAb IF10. The binding of both antibodies to immobilized BSAglutathione- HgCl was inhibited by soluble HgCl2, and dissociation constants for mercuric chloride binding were 2.3 and 3.7 nM for mAbs 4A10 and l10, respectively. Both antibodies bound mercuric acetate with similar affinities, demonstrating that the antibodies were capable of binding to mercuric ions in the presence of a different counterion than the one used in the immunogen. Reactions were not observed with other metal cations by either antibody. These data demonstrate the successful induction of antibodies that react very specifically with mercuric ions in solution regardless of the presence of a carrier

    MONOCLONAL ANTIBODY ASSAY AND KIT FOR DETECTING METAL CATIONS IN BODY FLUIDS

    Get PDF
    The invention provides method and kits for detecting a metallic cation in a sample of a body fluid. The preferred method and kits include the use of at least two different types of antibodies having different specificities. In the preferred method, the sample of body fluid can be contacted with an effective amount of a capture antibody specific for a naturally occurring polypeptide that can bind the metallic cation to form a first antigen-antibody complex. An effective amount of an antibody specific for an epitope on a metallic cation-naturally occurring polypeptide complex or an antibody specific for a metallic cation is added to the first antigen-antibody complex to form a second antigen-antibody complex. The amount of the metallic cation in the sample of body fluid is determined by detecting the amount of the second antigen-antibody complex

    MONOCLONAL ANTIBODY ASSAY AND KIT FOR DETECTING METAL CATIONS IN BODY FLUIDS (continuation)

    Get PDF
    The invention provides method and kits for detecting a metallic cation in a sample of a body fluid. The preferred method and kits include the use of at least two different types of antibodies having different specificities. In the preferred method, the sample of body fluid can be contacted with an effective amount of a capture antibody specific for a naturally occurring polypeptide that can bind the metallic cation to form a first antigen-antibody complex. An effective amount of an antibody specific for an epitope on a metallic cation-naturally occurring polypeptide complex or an antibody specific for a metallic cation is added to the first antigen-antibody complex to form a second antigen-antibody complex. The amount of the metallic cation in the sample of body fluid is determined by detecting the amount of the second antigen-antibody complex

    Detection of Mercuric Ions in Water by ELISA with a Mercury- Specific Antibody

    Get PDF
    An immunoassay that detects mercuric ions in water at concentrations of 0.5 ppb and above is described. The assay utilizes a monoclonal antibody that binds specifically to mercuric ions immobilized in wells of microtiter plates. Within the range of 0.5-10 ppb mercury, the absorbance in the enzyme-linked immunosorbent assay (ELISA) is linear to the log of the mercuric ion concentration. The quantitation of mercury by ELISA correlates closely with results from cold-vapor atomic absorption. Other divalent metal cations do not interfere with the assay, although there is interference in the presence of 1 mM chloride ions. The optimum pH for mercury detection is 7.0, although 2 ppb mercury can be detected over a wide pH range. The assay is as sensitive as coldvapor atomic absorption for mercury detection and can be performed with only 100 μl of sample

    EXOPEPTIDASE CATALYZED SITE-SPECIFIC BONDING OF SUPPORTS, LABELS AND BIOACTIVE AGENTS TO PROTEINS

    Get PDF
    An auxiliary substance such as a label, support, or bioactive agent is attached to a protein at a site that is remote from the active site of the protein by the use of exopeptidase and a nucleophile which is an amino acid, amino acid derivative, amine or alcohol. In one embodiment, the nucleophile is attached to the carboxy terminus of a protein by catalysis with exopeptidase to form an adduct and then the adduct or its combination with a linker arm is bound to the auxiliary substance. In another embodiment, the auxiliary substance or its combination with a linker arm is bound to the nucleophile to form an intermediate substance which is then coupled by catalysis with exopeptidase to the carboxy terminus of a protein
    corecore