134 research outputs found

    Spatial analysis of campylobacter infection in the Canadian province of Manitoba

    Get PDF
    BACKGROUND: The study describes population level variations in campylobacter incidence within the Canadian province of Manitoba, and the relationship to sociodemographic and landscape related characteristics. Using data derived from the Manitoba Health Public Health Branch communicable disease surveillance database, the study applied a number of spatial and ecological techniques to visualize, explore and model campylobacter incidence for the years 1996 to 2004. Analytical techniques used in the study included spatial smoothing, the spatial scan statistic, the Gini coefficient, and Poisson regression analysis. RESULTS: The study demonstrated marked and statistically significant geographic variability in the rates of campylobacter incidence in Manitoba.. The incidence of campylobacter was observed to be significantly higher in populations living in rural and agricultural areas of the province, with the highest rates occurring in populations living in proximity to high densities of farm animals (cows, pigs, chickens). The study also observed that the age specific pattern of campylobacter incidence in rural Manitoba was very different than the urban pattern, with the incidence rate in the 0–4 year age group seven times higher in rural Manitoba than in the City of Winnipeg. CONCLUSION: The study demonstrates the value of a deploying a diverse set of spatial techniques to better understand the dynamics of an enteric disease such as campylobacter infection. The study concludes that there may be three distinct mechanisms for the transmission of campylobacter in Manitoba which are operating simultaneously. These include broad population exposure to a centralized food system endemically infected with the campylobacter organism, exposure to local level factors such as farm animals or contaminated water, and exposure to campylobacter infection through foreign travel

    Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system

    Get PDF
    Dendritic lamellar bodies have been reported to be associated with dendrodendritic gap junctions. In the present study we investigated this association at both the morphological and electrophysiological level in the olivocerebellar system. Because cerebellar GABAergic terminals are apposed to olivary dendrites coupled by gap junctions, and because lesions of cerebellar nuclei influence the coupling between neurons in the inferior olive, we postulated that if lamellar bodies and gap junctions are related, then the densities of both structures will change together when the cerebellar input is removed. Lesions of the cerebellar nuclei in rats and rabbits resulted in a reduction of the density of lamellar bodies, the number of lamellae per lamellar body, and the density of gap junctions in the inferior olive, whereas the number of olivary neurons was not significantly reduced. The association between lamellar bodies and electrotonic coupling was evaluated electrophysiologically in alert rabbits by comparing the occurrence of complex spike synchrony in different Purkinje cell zones of the flocculus that receive their climbing fibers from olivary subnuclei with different densities of lamellar bodies. The complex spike synchrony of Purkinje cell pairs, that receive their climbing fibers from an olivary subnucleus with a high density of lamellar bodies, was significantly higher than that of Purkinje cells, that receive their climbing fibers from a subnucleus with a low density of lamellar bodies. To investigate whether the complex spike synchrony is related to a possible synchrony between simple spikes, we recorded simultaneously the complex spike and simple spike responses of Purkinje cell pairs during natural visual stimulation. Synchronous simple spike responses did occur, and this synchrony tended to increase as the synchrony between the complex spikes increased. This relation raises the possibility that synchronously activated climbing fibers evoke their effects in part via the simple spike response of Purkinje cells. The present results indicate that dendritic lamellar bodies and dendrodendritic gap junctions can be downregulated concomitantly, and that the density of lamellar bodies in different olivary subdivisions is correlated with the degree of synchrony of their climbing fiber activity. Therefore these data support the hypothesis that dendritic lamellar bodies can be associated with dendrodendritic gap junctions. Considering that the density of dedritic lamellar bodies in the inferior olive is higher than in any other area of the brain, this conclusion implies that electrotonic coupling is important for the function of the olivocerebellar system

    Assessing School and Student Predictors of Weapons Reporting

    Get PDF
    School violence and weapons at school are a major concern for community members, school administrators, and policy makers. This research examines both student-level and school-level variables that predict middle school students’ willingness to report a weapon at school under several reporting conditions. Results substantiate previous analyses of these data that student-level variables explain students’ willingness to report a weapon but extend these findings to include school climate variables that affect willingness to report (i.e., collective identity and conflict). School climate variables were also shown to influence reporting under conditions in which there would be consequences for the weapons-carrying student or for the reporting student; however, school climate was not found to influence anonymous reporting conditions. Although policies aimed at improving school climate may increase a student’s willingness to report and are important in their own right, improving a school’s climate may be a daunting task. This research, therefore, suggests that the most efficient way to encourage weapons reporting is to provide students with an anonymous way to report

    Cyanogen in NGC 1851 red giant branch and asymptotic giant branch stars: Quadrimodal distributions

    Get PDF
    The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branc

    Somatic mutations and clonal dynamics in healthy and cirrhotic human liver.

    Get PDF
    The most common causes of chronic liver disease are excess alcohol intake, viral hepatitis and non-alcoholic fatty liver disease, with the clinical spectrum ranging in severity from hepatic inflammation to cirrhosis, liver failure or hepatocellular carcinoma (HCC). The genome of HCC exhibits diverse mutational signatures, resulting in recurrent mutations across more than 30 cancer genes1-7. Stem cells from normal livers have a low mutational burden and limited diversity of signatures8, which suggests that the complexity of HCC arises during the progression to chronic liver disease and subsequent malignant transformation. Here, by sequencing whole genomes of 482 microdissections of 100-500 hepatocytes from 5 normal and 9 cirrhotic livers, we show that cirrhotic liver has a higher mutational burden than normal liver. Although rare in normal hepatocytes, structural variants, including chromothripsis, were prominent in cirrhosis. Driver mutations, such as point mutations and structural variants, affected 1-5% of clones. Clonal expansions of millimetres in diameter occurred in cirrhosis, with clones sequestered by the bands of fibrosis that surround regenerative nodules. Some mutational signatures were universal and equally active in both non-malignant hepatocytes and HCCs; some were substantially more active in HCCs than chronic liver disease; and others-arising from exogenous exposures-were present in a subset of patients. The activity of exogenous signatures between adjacent cirrhotic nodules varied by up to tenfold within each patient, as a result of clone-specific and microenvironmental forces. Synchronous HCCs exhibited the same mutational signatures as background cirrhotic liver, but with higher burden. Somatic mutations chronicle the exposures, toxicity, regeneration and clonal structure of liver tissue as it progresses from health to disease.This work was supported by a Wellcome Trust and Cancer Research UK (CRUK) Grand Challenge Award (C98/A24032). P.J.C. is a Wellcome Trust Senior Clinical Fellow (WT088340MA); S.F.B. was supported by the Swiss National Science Foundation (P2SKP3-171753 and P400PB-180790); M.A.S. is supported by a Rubicon fellowship from NWO (019.153LW.038); the Cambridge Human Research Tissue Bank is supported by the NIHR Cambridge Biomedical Research Centre; and M.H. is supported by a CRUK Clinician Scientist Fellowship (C52489/A19924)

    Signatures of minor mergers in the Milky Way disc I: The SEGUE stellar sample

    Full text link
    It is now known that minor mergers are capable of creating structure in the phase-space distribution of their host galaxy's disc. In order to search for such imprints in the Milky Way, we analyse the SEGUE F/G-dwarf and the Schuster et al. (2006) stellar samples. We find similar features in these two completely independent stellar samples, consistent with the predictions of a Milky Way minor-merger event. We next apply the same analyses to high-resolution, idealised N-body simulations of the interaction between the Sagittarius dwarf galaxy and the Milky Way. The energy distributions of stellar particle samples in small spatial regions in the host disc reveal strong variations of structure with position. We find good matches to the observations for models with a mass of Sagittarius' dark matter halo progenitor âȘ…1011\lessapprox 10^{11} M⊙_{\odot}. Thus, we show that this kind of analysis could be used to provide unprecedentedly tight constraints on Sagittarius' orbital parameters, as well as place a lower limit on its mass.Comment: 14 pages, 9 figures, 2 tables. Revised to reflect accepted versio
    • 

    corecore