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SUMMARY 33 

The commonest causes of chronic liver disease are excess alcohol intake, viral 34 

hepatitis or non-alcoholic fatty liver disease, with the clinical spectrum ranging 35 

in severity from hepatic inflammation through cirrhosis to liver failure or 36 

hepatocellular carcinoma. The hepatocellular carcinoma genome exhibits diverse 37 

mutational signatures, resulting in recurrent mutations across >20-30 cancer 38 

genes1–7. Stem cells from normal livers have low mutation burden and limited 39 

diversity of signatures8, suggesting that the complexity of hepatocellular 40 

carcinoma arises during progression to chronic liver disease and subsequent 41 

malignant transformation. We sequenced whole genomes of 482 42 

microdissections of 100-500 hepatocytes from 5 normal and 9 cirrhotic livers. 43 

Compared to normal liver, cirrhotic liver had higher mutation burden. Although 44 

rare in normal hepatocytes, structural variants, including chromothripsis, were 45 

prominent in cirrhosis. Driver mutations, both point mutations and structural 46 

variants, affected 1-5% clones. Clonal expansions millimetres in diameter 47 

occurred in cirrhosis, sequestered by bands of fibrosis engirdling regenerative 48 

nodules. Some mutational signatures were universal and equally active in both 49 

non-malignant hepatocytes and HCC; some were substantially more active in 50 

HCC than chronic liver disease; and others, arising from exogenous exposures, 51 

were present in a subset of patients. Up to 10-fold within-patient variation in 52 

activity of exogenous signatures existed between adjacent cirrhotic nodules, 53 

arising from clone-specific and microenvironmental forces. Synchronous 54 

hepatocellular carcinomas exhibited the same mutational signatures as 55 

background cirrhotic liver, but with higher burden. Somatic mutations chronicle 56 

the exposures, toxicity, regeneration and clonal structure of liver tissue as it 57 

progresses from health to disease. 58 

    59 



MAIN TEXT 60 

Identifying somatic mutations in non-malignant tissue requires approaches to 61 

overcome its polyclonality, such as single cell sequencing9, cultures of single 62 

cells8,10 or microbiopsy sequencing11. The latter relies on local cell division with 63 

limited migration leading to a clonal patchwork, a known property of 64 

hepatocytes12. We generated whole genome sequences from 482 laser-capture 65 

microdissections of 100-500 hepatocytes (Extended Figure 1A) across 14 66 

patients: 5 normal controls; 4 with cirrhosis from alcohol-related liver disease 67 

(ARLD) and 5 with cirrhosis from non-alcoholic fatty liver disease (NAFLD) 68 

(Supplementary Tables 1-2, Extended Figures 4-6). Samples of normal liver 69 

were acquired from hepatic resections of colorectal cancer metastases; samples 70 

of cirrhotic liver from patients transplanted for synchronous but distant 71 

hepatocellular carcinoma (HCC).  72 

 73 

To evaluate sensitivity and specificity, we generated independent libraries and 74 

sequencing data from different sections of the same biopsy, microdissecting the 75 

same x,y-region from adjacent z-stacks, separated by ~20m. Concordance was 76 

high between variants called in adjacent sections, but not distant pairs, 77 

suggesting that specificity of mutation calls was high (Extended Figure 1B), and 78 

sensitivity across patients was 50-95%, dependent on coverage and clonality 79 

(Extended Figure 1C-F). As a further check on specificity, deep targeted 80 

sequencing of cancer genes in the same library as 96 whole-genome samples 81 

confirmed 16 of 17 mutations originally called. In keeping with polyploidy as a 82 

late differentiation stage in liver13, 20-25% of mature hepatocytes in 83 

microdissected samples were multinuclear (Extended Figure 1G). We therefore 84 

deployed copy number algorithms with expected ploidy of 4, and report 85 

mutation burdens per diploid genome, rather than per cell. 86 

 87 

We observed considerable heterogeneity in burden of somatic substitutions both 88 

between and within patients (Figure 1A; Supplementary Tables 3-4). Using 89 

mixed effects models, microdissections from cirrhotic livers had, on average, 90 



1251 (CI95% 233-2268; p=0.02) extra substitutions per diploid genome 91 

compared to normal livers, independent of age. In accordance with published 92 

values8, the estimated rate of mutation accumulation was 33/year/diploid 93 

genome, albeit with wide confidence intervals (CI95% -17–84; p=0.18) and 94 

moderate variation between individuals (estimated between-individual SD, 95 

13/year). Indels showed the same heterogeneity between and within individuals 96 

as substitutions (Figure 1B). 97 

 98 

Structural variants and copy number alterations occurred in moderate numbers 99 

across all 9 patients with liver cirrhosis, despite being rare in normal liver 100 

(Figure 1C, Extended Figure 2, Supplementary Tables 3-4). Occasional whole 101 

chromosome or arm-level aneuploidy occurred, as well as focal events, including 102 

deletions, tandem duplications and unbalanced translocations (Extended Figure 103 

2). We found 5 separate clusters of SVs, across 3 patients, with patterns 104 

indicative of chromothripsis14 (Figures 1D-F, Extended Figure 2). 105 

Chromothripsis, in which multiple rearrangements occur in a single catastrophic 106 

mitosis14, is a major mutational process in cancers, occurring in ~5% of HCCs15, 107 

but is rare in normal somatic cells. To see 1-2% of clones in chronic liver disease 108 

with chromothripsis suggests that sustained toxicity and regeneration 109 

substantially increases mitotic stress in hepatocytes.    110 

 111 

We screened for driver mutations among coding regions, 5’-UTRs, 3’-UTRs and 112 

promoters (Supplementary Tables 5-8). No elements were significant after 113 

genome-wide multiple hypothesis correction, so we focused on the 30 most 114 

prevalent HCC genes1–5. These carried 22 non-synonymous variants, seen in both 115 

normal and cirrhotic samples, including inactivating mutations in the tumour 116 

suppressor genes ACVR2A, ARID2, ARID1A and TSC2 (Extended Figure 3A). With 117 

hypothesis testing restricted to these 30 genes, ALB (q=0.001) and ACVR2A 118 

(q=0.001) were significant. Recurrence in ALB (albumin) likely reflects a 119 

mutational process in which indels preferentially occur in highly expressed 120 

genes, as reported in HCCs5,16 (Extended Figure 3B-C). Assuming no negative 121 

selection, we can use the ratio of non-synonymous to synonymous substitutions 122 



for the 30 HCC genes to estimate the number of driver substitutions among 123 

them17 – this gives a 95% confidence interval of 0.0–13.2 drivers in total across 124 

482 microdissections (<3%). Among copy number aberrations of potential 125 

significance1,2,18 (Supplementary Table 9), we found instances of chromosome 126 

22 loss, 8q gain and 8p loss. Two focal deletions in different patients spanned 127 

ACVR2A (Extended Figure 2C,E). We also found a reciprocal inversion that 128 

deleted CDKN2A (Extended Figure 2F), the most common focal deletion in HCC, 129 

and a deletion affecting ARID5A.  130 

 131 

We reconstructed phylogenetic trees19, layering them onto the specimen’s 132 

histology. Samples from the healthy controls showed the highly polyclonal 133 

nature of normal liver, with little genetic relatedness among even closely located 134 

microdissections (Figure 2A-D, Extended Figure 4). Samples from patients 135 

with chronic liver disease showed more complex clonal structure, from which 136 

three general inferences can be drawn (Figure 2E-P, Extended Figures 5-6). 137 

First, we found no sharing of mutations between adjacent liver nodules 138 

separated by fibrotic bands. This suggests that the connective tissue laid down 139 

during cycles of damage and regeneration sequesters clones from early stages of 140 

the disease process. Second, some cirrhotic nodules were monoclonally derived 141 

(Figure 2J,N, for example), while others were oligoclonal (Figure 2F), with 142 

shared mutations often extending across microdissections millimetres apart. 143 

Third, branching structures in phylogenies point to subclonal diversification 144 

within nodules. Within such a clone, the proportion of shared, clonal mutations 145 

on the trunk relative to those on the subclonal branches gives an estimate in 146 

molecular time of when the most recent common ancestor of the clone emerged. 147 

In some patients (for example, Figure 2I-J), the common ancestor of individual 148 

nodules emerged relatively early in molecular time, while in others (Figure 2M-149 

N), the common ancestor appeared much more recently. Since the majority of 150 

liver cells do not have driver mutations, the size and rapidity of clonal 151 

expansions observed here evince the considerable in-built capacity of 152 

hepatocytes to regenerate in response to liver damage.  153 

 154 



A major debate in modelling cancer development is whether cancers need higher 155 

mutation rates in order to acquire sufficient drivers. We compared mutation 156 

burden in cirrhotic liver to synchronous, clonally unrelated HCCs from 7 157 

patients. Synchronous HCCs carried, on average, 4600 more mutations than 158 

matched cirrhotic liver (CI95% 3600-5500; p<10-18 LME models; Figure 3A). This 159 

argues that mutation rates increase during malignant transformation, either 160 

through cancer-specific mutational processes or through greater activity in 161 

cancers of widespread mutational processes. 162 

 163 

To assess what mutational processes are active in cirrhosis, we extracted 164 

mutational signatures across our 482 microdissections, the 7 synchronous HCCs 165 

and 54 HCC genomes from TCGA1, using two independent algorithms (Figure 166 

3B-E, Extended Figures 7-8). Three major groups of mutational signatures 167 

emerged: those ubiquitous and similarly active across cirrhosis and HCC; those 168 

quiet in cirrhosis but universally more active in HCC; and those contributing to 169 

some patients but not others, including signatures arising from exogenous 170 

exposures. 171 

 172 

In normal and cirrhotic liver, ubiquitous mutational signatures (5 and Sig.A) 173 

were prevalent across clones, typically accounting for >75% of mutations in 174 

combination. Signature 5 is widespread across cancers, including HCCs2,4,20, and 175 

accumulates linearly with age, suggesting it arises from endogenous mutational 176 

processes. Sig.A is the dominant cause of mutations in normal blood stem 177 

cells10,21 and leukaemias21, suggesting it too arises endogenously. In HCCs, 178 

although Sig.A accounted for a lower proportion of mutations than in normal or 179 

cirrhotic liver, the absolute numbers of mutations attributed to Sig.A were 180 

comparable (Difference between cancer and non-cancer, 60 mutations; CI95% -181 

80-200; p=0.4; Figure 3F, Supplementary Table 10). This suggests that it is 182 

active in hepatocytes throughout life, but is outstripped in HCC by mutational 183 

processes emerging during malignant transformation. 184 

 185 



A second group of mutational signatures comprises processes that are relatively 186 

quiet in cirrhotic liver but universally more active in HCC (signatures 1, 12, 16, 187 

40 and a novel signature, D; Supplementary Table 10). One of these, signature 188 

16, consists of T>C mutations in ApT context and has a known transcriptional 189 

strand bias, with both preferential repair of damaged adenines on transcribed 190 

strands and increased damage on non-transcribed strands22. Although this 191 

signature is more active in HCCs, we do see its characteristic transcriptional 192 

strand bias in cirrhotic liver (Extended Figure 9A). Signature 1, caused by 193 

spontaneous deamination of methylated cytosine to thymine, is also much more 194 

active in HCC than non-malignant liver. The acceleration and universality of 195 

these signatures in HCC suggests they reflect inbuilt DNA damage and repair 196 

processes in hepatocytes that are unmasked during malignant transformation. 197 

 198 

The third group of mutational processes represents signatures seen sporadically 199 

across the cohort, many of which are due to exogenous exposures. One, signature 200 

4, is found in lung cancers from smokers20 and also HCCs, albeit with a less clear-201 

cut relationship to tobacco2.  Of our 14 patients, 4 had >10% of microdissections 202 

with >5% of mutations attributed to signature 4, showing the expected 203 

transcriptional strand bias on guanines (Extended Figure 9B). Not only did 204 

signature 4 show considerable patient-to-patient heterogeneity, there was also 205 

unexpectedly high clone-to-clone and nodule-to-nodule variability within 206 

individual livers. In one patient, for example, about half the clones we sequenced 207 

had 2000-4000 mutations, whereas the other half had 8000-12000, driven by 208 

presence or absence of signature 4 (Figure 4A).  209 

 210 

This within-patient regional variability extended to other exogenous exposures. 211 

In one patient, 20-35% of mutations derived from signature 22 (Figure 4B; 212 

Extended Figure 9C), characteristic of exposure to aristolochic acid23. This 213 

patient grew up in Poland, holidaying in Balkan states where aristolochic acid 214 

exposure is pervasive24. In a different patient, a subset of microdissections had 215 

10-20% mutations attributable to signature 24 (Figure 4C), associated with 216 

aflatoxin-B1 exposure5. Biomarkers of exposure to aflatoxin-B1, produced by 217 



Aspergillus moulds contaminating crops, are prevalent in arable farmers25, the 218 

occupation of our patient. In both patients, these carcinogens showed striking 219 

variability in mutational activity over short distances, generating few mutations 220 

in some clones and hundreds to thousands in others – such striking regional 221 

variation in activity of exogenous signatures is both unexpected and 222 

unexplained.  223 

 224 

In one patient, we found a large clone that carried >2000 mutations attributed to 225 

signature 9 (Figure 4D), caused by off-target somatic hypermutation in B 226 

lymphocytes20. A clonotypic IGH rearrangement was evident, consistent with a 227 

single B lymphocyte subclonally diversifying as it expanded in the liver 228 

(Extended Figure 10). Signature 9 was only present on the ancestral trunk, 229 

whereas signatures in the subclones, acquired in the liver, distributed similarly 230 

to hepatocytes, suggesting the hepatic microenvironment shaped the on-going 231 

mutational processes in the lymphocytes.  232 

 233 

In conclusion, then, non-malignant liver has considerably lower proportions of 234 

clones (<5%) with driver point mutations or structural variants than oesophagus 235 

or skin11,26,27, and those present were seen in both normal and cirrhotic liver.  236 

They did not drive large clonal expansions, being restricted by fibrosis, and were 237 

not shared with the distant synchronous HCCs, suggesting that the increased 238 

cancer risk seen in chronic liver disease arises from a myriad of clones 239 

competing independently to acquire sufficient driver mutations. TERT promoter 240 

mutations are likely to be key events in this progression as they are seen in 241 

dysplastic hepatic nodules18,28, but we did not identify any in cirrhotic or normal 242 

liver. The low proportion of clones with drivers observed here and in exome 243 

studies performed elsewhere29,30 means that much larger sample sizes will be 244 

needed to comprehensively map how driver mutations accumulate in the 245 

progression from normal liver through regenerative and dysplastic nodules to 246 

HCC. 247 

 248 



These data reveal the genomic consequences of chronic liver disease – increased 249 

mutation rates; complex structural variation including chromothripsis; 250 

aneuploidies; low burden of mutations targeting known HCC genes. Genomically, 251 

one middle-aged, healthy liver looks much like any other: a community of small, 252 

tightly packed clones, each comprising a few hundred cells, containing ~1000-253 

1500 mutations, painted from a limited palette of signatures. Unhealthy livers 254 

diverge from this norm: large dynasties of clones, sequestered by impassable 255 

bands of fibrosis, their palette of signatures more variable, more vigorous, more 256 

regionally variegated.  257 

 258 
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FIGURE LEGENDS 383 

 384 

Figure 1: Mutational burden observed in non-cancerous hepatocytes.  385 

(A) Burden of SNVs corrected by sensitivity of mutation detection. Each boxplot 386 

represents a patient (n=14 patients; 482 microdissections), each dot represents 387 

one laser-capture microdissected sample. The grey-to-black intensity of the 388 

points reflects the median variant allele fraction (vaf) of mutations in each 389 

microdissection. Boxes in the box-and-whisker plots indicate median and 390 

interquartile range; whiskers denote range. 391 

(B) Burden of insertion-deletion (INDEL) variants (n=14 patients; 482 392 

microdissections).  393 

(C) Burden of copy number variants (CNVs) and structural variants (SVs), 394 

represented as number of unique events per patient. 395 

(D) Chromothripsis involving chromosomes 16 and 21 observed in patient 396 

PD37111. Black points represent corrected read-depth along the chromosome. 397 

Lines and arcs represent structural variants, coloured by orientation of joined 398 

ends (purple, tail-to-tail inverted; orange, head-to-head inverted; pale blue, 399 

tandem duplication-type orientation; pale green, deletion-type orientation). 400 

(E) Chromothripsis involving chromosomes 1 and 3 observed in patient 401 

PD37105. 402 

(F) Chromothripsis involving chromosomes 2, 5 and 6 observed in patient 403 

PD37105 (in a separate clone to panel E). 404 

 405 

Figure 2: Phylogenetic reconstruction of hepatocyte clones. 406 

(A) Phylogenetic tree constructed from clustering of mutations across 407 

microdissected samples in a normal patient (PD36715). Lengths of branches (x 408 

axis) indicate numbers of mutations assigned to that branch. Solid lines: nesting 409 

is in accordance with the pigeon-hole principle. Dashed lines: nesting is in 410 

accordance with the pigeon-hole principle assuming hepatocytes represent 70% 411 

of cells. Dotted lines: nesting is only based on clustering, assigning a clone as 412 

nested if variant allele fractions of constituent microdissections are lower than 413 

those in the parental clone.  414 



(B) Representation of branches from the phylogenetic tree in panel A according 415 

to their physical coordinates, overlaid onto an H+E stained section. Black points 416 

represent branches of the tree sharing no mutations with any other samples; 417 

coloured points represent branches with shared clonal relationships (n=26 418 

microdissections).  419 

(C, D) A second normal liver sample (PD36713; n=30 microdissections).   420 

(E, F) Patient with ARLD (PD37105; n=31 microdissections) 421 

(G, H) Patient with ARLD (PD37110; n=22 microdissections) 422 

(I, J) Patient with NAFLD (PD37114; n=41 microdissections) 423 

(K, L) Patient with NAFLD (PD37115; n=34 microdissections) 424 

(M, N) Patient with NAFLD (PD37116; 43 microdissections) 425 

(O, P) Patient with NAFLD (PD37118; 26 micordissections) 426 

 427 

Figure 3: Mutational signatures in normal liver, cirrhotic liver and HCC.  428 

(A) Number of somatic substitutions (SNVs; sensitivity-corrected for non-429 

cancerous samples) and insertion-deletion events (INDELs) in each non-cancer 430 

microdissection sample (blue points) and associated synchronous HCC (red 431 

diamonds).  432 

(B) Stacked bar blot showing estimated proportional contributions of each 433 

mutational signature to each phylogenetically defined cluster of somatic 434 

substitutions. Data generated using a Bayesian hierarchical Dirichlet process. 435 

(C) Stacked bar blot showing proportional contributions of signatures in patients 436 

with ARLD.  437 

(D) Stacked bar blot showing estimated proportional contributions of signatures 438 

in patients with NAFLD.  439 

(E) Stacked bar blot showing estimated proportional contributions of signatures 440 

to 54 cases of HCC from TCGA1.  441 

(F) Number of SNVs attributed to prevalent mutation signatures in each non-442 

cancer microdissection sample (blue circles) and synchronous HCCs (red 443 

diamonds). Contributions for the TCGA samples are shown on the right. The y-444 

axis is on a logarithmic scale. 445 

 446 



Figure 4: The liver as a witness for mutagenic insults occurring throughout 447 

life. 448 

(A) Left panel: Phylogenetic tree of clones in patient PD37111, with each branch 449 

coloured by the proportion of mutations in that branch assigned to the different 450 

mutational signatures.  451 

Middle panel: Overlay of the clones represented in (A) onto an H+E stained liver 452 

section of patient PD37111 (n=39 microdissections). Colouring of clones is 453 

according to the proportion of mutations attributed to Sig. 4, linked to tobacco 454 

exposure (blue: low activity of Sig. 4, red: high activity of Sig. 4).  455 

Right panel: Representative mutation spectrum for samples with low (top) or 456 

high (bottom) burden of Sig. 4. The six substitution types are labelled across the 457 

top. Within each substitution type, the contribution from the trinucleotide 458 

context are shown as 16 bars. The 16 bars are divided into four sets of four bars, 459 

grouped by whether an A, C, G or T respectively is 5’ to the mutated base, and 460 

within each group of four by whether A, C, G or T is 3’ to the mutated base. 461 

(B) Overlay of mutational signatures onto phylogenetic tree of clones in patient 462 

PD37107 (n=41 microdissections). Colouring of clones in the middle panel is 463 

according to Sig. 22, linked to the aristolochic acid carcinogen.  464 

(C) Overlay of mutational signatures onto phylogenetic tree of clones in patient 465 

PD36714 (n=35 microdissections). Colouring of clones in middle panel is 466 

according to Sig. 24, linked to the carcinogen aflatoxin-B1.  467 

(D) Overlay of mutational signatures onto phylogenetic tree of clones in patient 468 

PD37113 (n=37 microdissections). Cluster 10 has many mutations attributed to 469 

Sig. 9, linked to the somatic hypermutation process in B lymphocytes.  470 

  471 



EXTENDED FIGURE LEGENDS 472 

 473 

Extended Figure 1: Sensitivity analysis of SNV calls. 474 

(A) Overview schematic of the experimental and analytical approach.  475 

(B) Examples of the variant allele fractions (VAFs) of variants from unrelated 476 

(top) and related (bottom) microdissection sample pairs from four donors (left 477 

to right). X-axis represents the VAF of sample 1 from each pair; Y-axis represents 478 

the VAF of sample 2. Each dot represents one variant. Red: variants called in both 479 

samples, yellow: variants called in sample 1, blue: variants called in sample 2. 480 

(C) Histogram of sensitivities calculated for each sample pair. 481 

(D) Heatmap of modelled sensitivity at different values of VAF and coverage. 482 

Overlaid dots represent sample pairs used to fit model.  483 

(E) Relationship of VAF, sensitivity and coverage according to fitted model of 484 

sensitivity. Overlaid dots represent sample pairs used to fit model.  485 

(F) Comparison of calculated (x-axis) and fitted (y-axis) sensitivity for each 486 

sample pair (n=34 pairs of samples). The R2 value quoted is a Pearson’s 487 

correlation coefficient.  488 

(G) Proportion of hepatocytes that are multinucleated in samples analysed here, 489 

estimated by counting 500 cells in each H&E section (n=14 patients). Each point 490 

represents the proportion of a patient in the study. The horizontal bars 491 

represent the mean for that aetiological group. 492 

 493 

Extended Figure 2: Copy number and structural variants in chronic liver 494 

disease. (A, B) Genome-wide copy number profiles for two samples. Black 495 

points represent read-depth of discrete windows along the chromosome, 496 

corrected to show overall copy number. Arm-level and whole chromosome gains 497 

and losses are evident. 498 

(C-H) Focal copy number changes and structural variants. Black points represent 499 

read-depth of discrete windows along the chromosome, corrected to show 500 

overall copy number. Lines and arcs represent individual structural variants, 501 

coloured by the orientation of the joined ends (purple, tail-to-tail inverted; 502 

orange, head-to-head inverted; pale blue, tandem duplication-type orientation; 503 



pale green, deletion-type orientation). Events affecting known HCC genes are 504 

marked with labelled arrows (panels C, E, F). 505 

 506 

Extended Figure 3: Events affecting known HCC genes in cohort.  507 

(A) Distribution of somatic point mutations in individual microdissections (x 508 

axis) affecting known HCC genes (y axis). The inset to the left shows the 509 

frequency of events in individual genes. The inset to the bottom shows the 510 

aetiology attributed to the sample, and whether the sample was drawn from 511 

non-cancerous hepatocytes (left) or HCC (right). 512 

(B) Genomic position of single nucleotide substitutions (SNVs; light blue strip, 513 

top) and insertion-deletions (INDELs; dark blue strip, bottom) detected in ALB, 514 

the gene encoding albumin.  515 

 (C) Relationship of gene expression in liver tissue (x axis) and proportion of 516 

indels as a fraction of all point mutations (y axis). The grey line represents a 517 

Poisson regression model with a significant (two-sided likelihood ratio test; p < 518 

10-16) coefficient for gene expression as a predictor for the ratio of indels 519 

(n=5458 genes included in model). The grey ribbon represents the 99% 520 

confidence interval of the parameter estimates. 521 

 522 

Extended Figure 4: Phylogenetic reconstruction of hepatocyte clones in 523 

non-cirrhotic liver samples. 524 

Left column: Heatmap representing the clustering of the variants observed in 525 

each microdissection sample (x-axis) of the non-cirrhotic livers. Each cluster (y-526 

axis) contains mutations for which variant allele fractions across samples are 527 

very similar. The colour scale of the boxes represents the estimated mean variant 528 

allele fraction for that cluster in that sample. 529 

Middle column: Phylogenetic trees constructed from the clustering information. 530 

Solid lines: nesting is in accordance with the pigeon-hole principle. Dashed lines: 531 

nesting is in accordance with the pigeon-hole principle assuming the pool of 532 

hepatocytes to be 70% of cells. Dotted lines: nesting is only based on clustering, 533 

assigning a clone as nested if its constituent LCMs are a subset of LCMs in the 534 

parental clone. Details given in Supplementary Methods. 535 



Right column: Representation of clones according to the physical coordinates of 536 

the LCM samples, overlaid onto H&E stained sections (top), with Masson’s 537 

trichrome and Oil Red-O sections also shown (bottom). Locations of 538 

immune/inflammatory cell infiltrates are marked with yellow rings. Sample sizes 539 

were for PD36713, n=30 microdissections; PD36714, n=35 microdissections; 540 

PD36715, n=26 microdissections; PD36717, n=42 microdissections; PD36718, 541 

n=32 microdissections. 542 

 543 

Extended Figure 5: Phylogenetic reconstruction of hepatocyte clones in 544 

alcohol-related cirrhosis. 545 

Analogous to Extended Figure 4, representing the cirrhotic livers of donors 546 

PD37105, PD37107, PD37110 and PD37111. The pictures in the right column 547 

are of H&E stains on the top, with Masson’s trichrome and a macroscopic 548 

photograph of the liver on the bottom, with HCCs indicated by arrows. Locations 549 

of immune/inflammatory cell infiltrates are marked with yellow rings. Sample 550 

sizes were for PD37105, n=31 microdissections; PD37107, n=41 551 

microdissections; PD37110, n=22 microdissections; PD37111, n=39 552 

microdissections. 553 

 554 

Extended Figure 6: Phylogenetic reconstruction of hepatocyte clones in 555 

non-alcoholic fatty liver disease with cirrhosis. 556 

Analogous to Extended Figure 4, representing the cirrhotic livers of donors 557 

PD37113, PD37114, PD37115, PD37116 and PD37118. The pictures in the right 558 

column are of H&E stains on the top, with Masson’s trichrome and a macroscopic 559 

photograph of the liver on the bottom, with HCCs indicated by arrows. Locations 560 

of immune/inflammatory cell infiltrates are marked with yellow rings. Sample 561 

sizes were for PD37113, n=37 microdissections; PD37114, n=41 562 

microdissections; PD37115, n=34 microdissections; PD37116, n=43 563 

microdissections; PD37118, n=26 microdissections. 564 

 565 

Extended Figure 7: Mutation spectrum of individual microdissections 566 

From each donor, we chose 5 clones to represented the heterogeneity in 567 

trinucleotide context mutation spectra. The six substitution types are shown in 568 



the panel across the top of each clone’s data. Within each panel, the contribution 569 

from the trinucleotide context (bases immediately 5’ and 3’ of the mutated base) 570 

are shown. 571 

 572 

Extended Figure 8: Details of mutational signature extractions 573 

(A) Dot plots showing the concordance for signature attributions between the 574 

two signature algorithms (n=479 microdissections). Mutational signatures on 575 

the y axis were extracted using non-negative matrix factorisation and on the x 576 

axis using a Bayesian hierarchical Dirichlet process. Quoted R values are 577 

Pearson’s correlation coefficients. 578 

(B) Signatures extracted by non-negative matrix factorisation. The six 579 

substitution types are shown in the panel across the top of each clone’s data. 580 

Within each panel, the contribution from the trinucleotide context (bases 581 

immediately 5’ and 3’ of the mutated base) are shown. 582 

(C) Signatures extracted by the Bayesian hierarchical Dirichlet process, as for 583 

panel B. Where a signature matches one from panel B, it is shown on the same 584 

row. 585 

 586 

Extended Figure 9: Transcription strand bias in mutational patterns 587 

(A) Transcription strand bias of T>C mutations at A[T]D context before and after 588 

transcription start sites of highly expressed liver genes.   589 

(B) Bar plots representing the numbers of C>A variants on the transcribed and 590 

non-transcribed strand. Each hepatocyte clone is represented individually (x-591 

axis). Note the strand bias in the highly mutated clones of PD37111, where the 592 

tobacco signature is most active – the strand bias indicates the damaged base is 593 

the guanine, as expected for polycyclic aromatic hydrocarbons. 594 

(C) Bar plots representing the numbers of T>A variants on the transcribed and 595 

non-transcribed strand. Each hepatocyte clone is represented individually (x-596 

axis). Note the strand bias in the highly mutated clones of PD37107, where the 597 

aristolochic acid signature is most active – the strand bias indicates the damaged 598 

base is the adenine, as expected for polycyclic aromatic hydrocarbons. 599 

 600 

Extended Figure 10: Mutations in a B lymphocyte clone in a cirrhotic liver 601 



(A) Illustration of a portion of the B-cell receptor (IGH) region on chromosome 602 

14. Shown are the coverage tracks of an LCM sample that does not belong to the 603 

lymphocyte lineage (top) and a sample that belongs to the lymphocyte lineage 604 

(middle). In the center of the displayed region there is a drop of copy number in 605 

the lymphocyte track, indicating a structural rearrangement. The bottom track 606 

shows the paired-end reads that contribute to a rearrangement event in the 607 

lymphocyte sample, co-localised with the drop in copy number. 608 

(B) Application of the pigeonhole principle – if two clusters of heterozygous 609 

mutations in regions of diploid copy number are in different cells, then their 610 

median variant allele fractions must sum to ≤0.5 (if they sum to >0.5, equivalent 611 

to a combined cellular fraction of >1, there must be some cells that carry both 612 

sets of mutations – hence one cluster would have a subclonal relationship with 613 

the other). Cluster 10 is the cluster with the unique VDJ rearrangement of IGH 614 

shown in panel A and the large number of mutations attributed to signature 9. 615 

Clearly, samples from clusters 2, 11 and 55 etc have VAFs which, when combined 616 

with cluster 10, sum to >0.5. Therefore, they must be subclonal to cluster 10, 617 

even though they do show signature 9. 618 

(C-H) Representative pairwise decision graphs for clusters of mutations. Median 619 

cellular fraction is shown for pairs of clusters across every sample from the 620 

patient. Where at least one sample falls above / to the right of the x+y=1 diagonal 621 

line, those two clusters must share a nested clonal-subclonal relationship.     622 

  623 



Methods 624 

 625 

SAMPLES AND SEQUENCING 626 

Samples 627 

Patients recruited at Addenbrooke’s Hospital, Cambridge gave written informed 628 

consent with approval of the Local Research Ethics Committee (16/NI/0196). 629 

 630 

Normal liver samples were obtained from patients with liver metastases from 631 

colorectal carcinoma (CRC). The liver specimens were obtained from resected 632 

liver distal to the metastases, that were confirmed on histology. None of the 633 

patients had undergone neo-adjuvant systemic therapy; one patient had 634 

undergone pre-operative portal vein embolisation (PD36718) to the ipsilateral 635 

liver lobe. Liver tissue from patients with chronic liver disease (CLD) was 636 

derived from explanted diseased livers at the time of transplantation. All of the 637 

patients were identified as having ARLD or NAFLD by clinical history to the 638 

transplant hepatology and addiction psychiatry teams, as well as explanted liver 639 

histology. None of the patients had undergone trans-arterial chemo-embolisation 640 

(TACE) or other locoregional therapy on the transplant waiting list, except 641 

PD37118 who underwent a single treatment to their HCC with TACE. All of the 642 

CLD patients, except one (PD37105), demonstrated significant pre-operative 643 

impairment of liver function as evidenced by a UKELD of >50. 644 

 645 

The explant liver histology was reviewed by a specialist liver histopathologist 646 

(SED), blinded to the sequencing results. The normal liver specimens had no 647 

fibrosis and no evidence of chronic liver disease; the explanted diseased livers 648 

uniformly demonstrated cirrhosis and HCC. The background liver histology was 649 

scored according to the Kleiner system31 on FFPE samples away from the HCC 650 

and the fresh frozen block used for the sequencing analysis. The Kleiner score 651 

assesses the presence of steatosis, lobular inflammation and hepatocyte 652 

ballooning to generate a cumulative NAS score. The presence or absence of 653 

cellular or nodular dysplasia was globally assessed in clinical FFPE samples 654 

(Supplementary table 1), as well as specifically assessed in the fresh-frozen block 655 

used for the laser capture microdissection and sequencing (Supplementary table 656 



1). Serial H&E-stained sections from the frozen block did not demonstrate 657 

dysplasia in any of the cases (Supplementary table 1). Further, there was no 658 

evidence of CRC or HCC on histological review of the fresh-frozen block used for 659 

sequencing. 660 

 661 

All tissue samples were snap-frozen in liquid nitrogen and stored at -80C in the 662 

Human Research Tissue Bank of the Cambridge University Hospitals NHS 663 

Foundation Trust. 664 

 665 

Preparation of tissue sections 666 

Tissue biopsies were embedded in Optimal Cooling Temperature (OCT, 667 

ThermoFisher) medium at -25C. Sections were cut at a thickness of 20µm using 668 

a Leica Cryotome and transferred onto PEN membrane slides (ThermoFisher). 669 

For fixation, slides were treated with 70% ethanol at room-temperature for 670 

2min. Slides were washed twice in 10% phosphate buffered saline (PBS) at 671 

room-temperature for 10s. For staining, slides were incubated in haematoxylin 672 

for 10s and rinsed twice in water. Slides were then incubated in eosin for 5s and 673 

rinsed once in water. Slides were washed twice with 70% ethanol for 5s, twice 674 

with 100% ethanol for 5s, and in xylene for 5s. Storage was at -20C. Additional 675 

sections were stained for H&E, Masson’s Trichrome and Oil Red O by standard 676 

laboratory techniques. All slides were scanned on a Leica AT2 at ×20 677 

magnification and a resolution of 0.5μm per pixel. 678 

 679 

Laser Capture Microdissection (LCM) 680 

Microdissection was performed using a LCM (Leica Microsystems LMD 7000). 681 

For each biopsy, 48 microdissections were cut with a target size of 20,000µm2, 682 

corresponding to about 400 hepatocyte cells. Images were taken before and after 683 

LCM. 684 

 685 

Sample lysis and DNA preparation 686 

LCM biopsies were lysed using the Arcturus PicoPure DNA Extraction Kit 687 

(ThermoFisher) following the manufacturer’s instructions. DNA libraries for 688 



Illumina sequencing were prepared using a protocol optimized for low input 689 

amounts of DNA, as described32.  690 

 691 

Whole-genome sequencing 692 

Paired-end sequencing reads (150bp) were generated using the Illumina X10 693 

platform for 400 samples, resulting in a target coverage of 30x-70x per sample. 694 

To avoid the known index-hopping artefact, we chose to avoid multiplexing 695 

samples and instead sequenced one sample per flow cell lane. To increase 696 

coverage for a subset of 96 samples, we used multiplexing and achieved 70x 697 

coverage. In addition to the LCM samples we also sequenced a bulk sample for 698 

each biopsy and (where available) associated hepatocellular carcinoma (HCC). 699 

 700 

The healthy liver samples came from wide resections of hepatic metastases of 701 

colorectal cancer. In each case, we sequenced the metastasis – this did not reveal 702 

any mutations shared between the colorectal cancer and liver, nor any variants 703 

shared by all liver samples absent from the colorectal cancer (beyond regions of 704 

loss-of-heterozygosity in the cancer). Likewise, for the cirrhotic liver samples, we 705 

sequenced the matched HCC, not revealing sharing of mutations. In one case, we 706 

sequenced microdissections of the fibrotic tissue, and here also did not find 707 

mutations restricted to all liver cells. 708 

 709 

Sequencing data were mapped to the human genome, GRCh37d5, using the 710 

BWA-Mem algorithm. 711 

 712 

VARIANT CALLING 713 

SNV calling 714 

Substitution variants were called using the Cancer Variants through Expectation 715 

Maximisation (CaVEMan) algorithm33, using the bulk sample of the liver biopsy 716 

as the matched normal. As part of the algorithm, the variants were annotated 717 

using VAGrENT34. Variant calls for bulk sequencing data of the cancer samples 718 

were not further filtered. For sequencing of LCMs, post-filtering was performed 719 

in three steps: 720 

 721 



1. Removal of duplicate counts: we noticed instances where variant bases were 722 

counted twice due to the overlap of paired-end sequencing reads. We removed 723 

such double counting and re-evaluated variant calls after taking double counts 724 

into account. 725 

 726 

2. Removal of variants introduced during library preparation: we noticed the 727 

presence of variants introduced due to incorrect processing of cruciform DNA. 728 

Erroneous variants were often present in inverted repeats and frequently 729 

accompanied by another proximal (~ 1-30bp distance). These inverted repeats 730 

can form cruciform DNA prior to DNA isolation or during library preparation. 731 

The library preparation protocol employed can incorrectly process these 732 

secondary DNA structures and inadvertently introduce one or more erroneous 733 

variants. For every variant the standard deviation (SD) and median absolute 734 

deviation (MAD) of the variant position within the read was separately 735 

calculated for positive and negative strand reads.  736 

In the case that the variant was supported by a low number of reads for a 737 

particular strand, the filtering was based on the statistics determined from the 738 

reads derived from the other strand. It was required that either:  739 

1. ≤  90% of supporting reads report the variant within the first 15% of the 740 

read as calculated from the alignment start. 741 

2. Or, that the MAD > 0 and SD > 4. 742 

 743 

In the case that sufficient reads supporting the variant were available for both 744 

strands it was required for both strands separately that either: 745 

1. ≤  90% of supporting reads report the variant within the first 15% of the 746 

read as calculated from the alignment start. 747 

2. Or, that the MAD > 2 and SD > 2. 748 

3. Or, that at least one strand has fulfills the criteria MAD > 1 and SD > 10. 749 

 750 

3. Comparison with an independent panel: to remove variant calls at badly-751 

mapping sites, we compared variant calls in the sequenced samples of each 752 

donor biopsy with samples from all unrelated donors in our cohort. For each 753 

variant site we expected the reference base to be dominant and conversely 754 



expected badly-mapping sites to contain frequent non-reference base counts. 755 

Thus, we counted the numbers of A, C, G, T, insertion and deletion calls at each 756 

variant site across all unrelated samples, resulting in a large “pileup” table. The 757 

dominance of the reference base was evaluated at each variant site using the 758 

entropy purity metric E: 759 

   ∑  (  )     (  )

  *               +

 

where x is the count of base i and the P(xi) are the fractions of base calls. Values 760 

of E close to 0 indicate that almost all reads in the independent panel contain a 761 

single base. Higher values of E indicate a mix of base calls at the site. To identify 762 

an optimal threshold of E for the filtering of variant sites, we evaluated the 763 

entropy metric against a labelled dataset of variant calls. Specifically, during the 764 

clustering of variants using the Bayesian Dirichlet process (described below), we 765 

identified clusters that had variants with low allele frequency present in all 766 

dissections from the same donor. Manual inspection showed that such variants 767 

occurred at badly-mapping sites. Thus, we labelled variant sites in those clusters 768 

as “badly-mapping” and were able to use the Area-Under-the-Receiver-Operator-769 

Curve to identify a threshold value EThr of 0.16 that allowed to separate the two 770 

labelled variant groups with an AUC of 0.99. 771 

 772 

Bayesian Dirichlet process for clustering VAFs across multiple samples 773 

We extend the model previously developed for clustering variant allele fractions 774 

(VAFs) of mutations called in a single sample19 to mutation data across multiple 775 

samples from the same individual. In normal somatic cells, the vast majority of 776 

the genome retains its normal, diploid copy number, which means that we can 777 

cluster the VAFs directly (excluding mutations on the X and Y chromosomes in 778 

males) – this has the considerable advantage that the Dirichlet Process model we 779 

build can rely directly on conjugate prior distributions. The model includes a 780 

potential split-merge step at each cycle of the Gibbs sampler, following a 781 

previously described Metropolis-Hastings proposal for conjugate distributions35. 782 

The algorithm could be extended to include a correction for different copy 783 

number states in given samples for a particular mutation through, for example, a 784 

Metropolis-Hastings update, but at considerable computational cost. The full 785 



mathematical development of the model is detailed in the Supplementary 786 

Methods. 787 

 788 

We ran the Gibbs sampler for 15,000 iterations, dropping the first 10,000 as a 789 

burn-in. We used the ECR algorithm36, implemented in the R package 790 

label.switching, to resolve the label switching problem associated with mixture 791 

models. We dropped clusters containing <100 variant sites.  792 

 793 

Phylogenetic tree construction 794 

Phylogenetic trees were constructed manually using the pigeonhole principle as 795 

described previously19. In short, each cluster identified using the Bayesian 796 

Dirichlet process represented a branch of the phylogenetic tree. Nesting of trees 797 

was identified with three different levels of certainty, illustrated on a pair of 798 

branches A and B: 799 

1. In case the median VAFs of A and B exceeded 100%, the pigeonhole 800 

principle defines that A and B are nested. 801 

2. We can assume that non-hepatocyte cells constitute a sizeable fraction of 802 

each LCM sample. Assuming a non-hepatocyte fraction of 30% we nested 803 

branches when VAFs of A and B exceeded 70%. This non-hepatocyte 804 

fraction was chosen as a conservative estimate of the fraction of cells 805 

intermixed in our microdissections that are not derived from the 806 

hepatocyte clone, based on observed VAF peaks in our data together with 807 

single-cell RNA sequencing data from liver tissue. 808 

3. If identical LCMs are members of both A and B, it is highly likely that A 809 

and B are nested, rather than independent branches. Thus, we also nested 810 

branches where the LCMs in one branch were a subset of the LCMs in the 811 

other (parental) branch. 812 

 813 

In each nesting scenario, we defined the parental branch to be the one with the 814 

higher median VAF in the contained LCMs. We highlighted the evidence level for 815 

nesting in each representation of phylogenetic trees, marking branches with 816 

evidence level 1 with a solid line, level 2 with a dashed line and level 3 with a 817 

dotted line. 818 



 819 

Analysis of driver variants 820 

We curated a list of genes that have been found to be significantly mutated in 821 

liver cancers in a selection of published studies1–4,6,7,37–39, as represented in 822 

Supplementary Table 5. Using the VAGrENT annotations34, we counted any 823 

regulatory, missense, nonsense, frameshift or essential splice variant as a 824 

potential driver variant. To systematically identify genes under mutagenic 825 

selection, we used the dN/dS method17 that screens for genes with an excess of 826 

non-synonymous mutations compared to that expected from the synonymous 827 

mutation rate. 828 

 829 

Sensitivity correction 830 

We identified 138 pairs of LCMs with a midpoint-to-midpoint distance of < 831 

500µm and at least one shared cluster according to the Bayesian Dirichlet 832 

process. These LCMs we assumed to represent the same clone, thus providing an 833 

opportunity to calculate the sensitivity of calling a variant present in one LCM in 834 

the other. If we assume the sensitivity is the same in both samples, then the 835 

maximum likelihood estimate for the sensitivity, when mutations not called in 836 

either sample are unobserved, is given by:  837 

  
   

      
 

where n2 is the number of variants called in both LCMs in each pair and n1 is the 838 

number of variants called only in one of the two LCMs. To evaluate the 839 

relationship of sensitivity with depth-of-coverage and VAF, we performed a 840 

logistic regression of sensitivity against these two predictors using the lm() 841 

function of the R programming language. The model fit was then used to 842 

calculate sensitivity for any LCM sample, given the coverage and VAF of the 843 

sample. 844 

 845 

Mutation burden analysis 846 

We used a linear mixed effects model to fit the number of variants per LCM 847 

sample against each individual’s disease aetiology (normal or cirrhotic) and age. 848 

We defined the individual’s ID as a random effect. The slope of the age coefficient 849 



was allowed to vary with the random effect. To facilitate the analysis, we used 850 

the lmer() function available from the lme4 package of the R programming 851 

language. To determine the significance of the aetiology and age coefficients, we 852 

used ANOVA analysis to perform a 2 test comparing our model with models 853 

omitting the aetiology and age coefficients, respectively.  854 

 855 

Deep targeted sequence validation of mutation calls 856 

For 96 of the microdissections sequenced by whole genome sequencing, we 857 

performed a deep targeted sequencing validation using an Agilent RNA bait-set 858 

covering 350 recurrently mutated cancer genes. Among these genes, a total of 17 859 

mutations were identified in the whole genome sequencing data from the 96 860 

samples – of these, 16 (94%) were validated, at comparable variant allele 861 

fractions, in the targeted deep sequencing data.  862 

 863 

INDEL calling 864 

INDELs were called using cgpPindel40. Variant calls for bulk sequencing data of 865 

the cancer samples were not further filtered. To remove artefactual calls from 866 

the LCM-derived data, we performed two post-filtering steps: 867 

 868 

1) Assignment to SNV-based clusters: we evaluated how well the VAF distribution 869 

of each INDEL across the LCMs from the same donor compared with the VAF 870 

distribution of each SNV-based cluster as identified by the Bayesian Dirichlet 871 

process. Given an INDEL in one LCM sample, we thus counted its occurrence in 872 

all related LCMs and assigned the resulting VAF profile to the SNV clusters’ VAF 873 

profiles using a Bayes’ classifier. We noticed that many INDELs were assigned to 874 

SNV clusters with <100 variants, which we had previously removed from the 875 

SNV analysis. On closer inspection we noticed that those INDELs had low VAF 876 

and occurred frequently in badly-mapping regions. We thus discarded INDELs 877 

assigned to those clusters. 878 

 879 

2) Filtering based on beta-binomial overdispersion parameter: we noticed that 880 

many INDELs occurred with low VAF in a large number of LCMs from the same 881 

donor and were, thus, likely to be artefactual. To systematically identify such 882 



INDELs, we fitted the beta-binomial distribution to the variant counts of each 883 

INDEL across the LCMs from the same donor. Fitted parameter  , the 884 

overdispersion parameter, was used to filter INDEL calls. A high value for 885 

parameter   (overdispersion) occurs when some LCMs have many variant read 886 

counts and others few or none. Conversely, a low value occurs when all LCMs 887 

have a similar number of variant counts (no overdispersion). Based on manual 888 

inspection, we removed variant calls with   < 0.02. 889 

 890 

Copy number calling 891 

CNs were called using the ASCAT algorithm41, assuming an expected ploidy of 4 892 

(to allow for physiologically polyploid hepatocytes) and 60% non-hepatocyte cell 893 

contamination for all samples. Robustness testing around these starting points 894 

(different expected ploidy or purity values) found that the specific values used 895 

did not materially affect the output. Variant calls for bulk sequencing data of the 896 

cancer samples were not further filtered. To remove artefactual variants from 897 

the LCM-derived data, we employed the SNV-based phylogenetic information. 898 

The genome was segmented into 500bp bins and the ASCAT-based copy number 899 

of each bin was calculated. Using the binned CN data we calculated the median 900 

CN in each LCM sample and ASCAT event. For each ASCAT event and LCM sample 901 

we assigned its absolute deviation from the diploid state. We compared each 902 

ASCAT event’s CN profile across the LCM samples with the VAF profile of each 903 

SNV cluster using cosine similarity (described below) to identify the most similar 904 

SNV cluster. Within each SNV cluster we proceeded to merge overlapping ASCAT 905 

events. Using manual inspection, we decided to keep ASCAT events if they 1) had 906 

a cosine similarity of < 0.1 to an SNV cluster and 2) if their assigned SNV cluster 907 

was not removed during SNV analysis due to having < 100 assigned SNVs.  908 

 909 

Structural variant calling 910 

SVs were called using the BRASS algorithm42 911 

(https://github.com/cancerit/BRASS). Variant calls for bulk sequencing data of 912 

the cancer samples were not further filtered. To remove artefactual variants 913 

from the LCM-derived data, we employed post-processing filters. Manual 914 

inspection of the sequencing reads identified for each SV showed that many 915 



reads were identical except for frame-shifts at repetitive sites. We decided that 916 

such reads represented duplicates and designed a filter to systematically remove 917 

these. We removed SVs supported by <2 reads after duplicate removal. Each 918 

remaining SV call was manually inspected.   919 

 920 

Clone size calculation 921 

We determined the midpoint coordinates of each LCM manually from the 922 

microscopy images collected during dissection. For each LCM belonging to a 923 

clone as determined by the Bayesian Dirichlet process, we used the function 924 

chull of the R programming language to identify the coordinates of the convex 925 

hull that included all LCMs. We identified the midpoint of each polygon as the 926 

average coordinate of all convex hull vertices. The size of the clone was then 927 

assigned to be the Euclidean distance between each convex hull vertex and the 928 

polygon’s midpoint. For clones that only consisted of a single LCM, we assigned 929 

the minimum clone size discovered across all clones. 930 

 931 

Extraction of mutational signatures from SNV contexts using HDP 932 

Mutational signatures were extracted using the HDP package 933 

(https://github.com/nicolaroberts/hdp) relying on the hierarchical Bayesian 934 

Dirichlet process. The units of signature extraction were mutations assigned to 935 

individual branches of the phylogenetic tree, grouped per patient, from the LCM 936 

data. In addition, to provide a comparison against signatures extracted in HCCs, 937 

we added catalogues of somatic substitutions from 54 whole genomes sequenced 938 

by the TGCA, analysed using the same core algorithms as used for the LCM data. 939 

The tool was used without defining prior signatures. As hyperparameters we set 940 

alpha and beta to 6 for the alpha clustering parameter. Extraction was started 941 

with 40 data clusters (parameter ‘initcc’). The Gibbs sampler was run with 942 

10,000 burn-in iterations (parameter ‘burnin’). With a spacing of 50 iterations 943 

(parameter ‘space’), 50 iterations were collected (parameter ‘n’). After each 944 

Gibbs sampling iteration, 3  iterations of concentration parameter sampling were 945 

performed (parameter ‘cpiter’). Resulting signatures were compared to 946 

published signatures20,43 using the cosine similarity metric described below. 947 

Extracted signatures with cosine similarity >0.9 compared to a known signature 948 



from either the COSMIC20 or PCAWG43 catalogue of signatures were assigned the 949 

name of the known signature with the highest similarity. Extracted signatures 950 

with cosine similarity <0.9 to any of the known signatures were assigned new 951 

names, indexed with letters A, B, and C. 952 

 953 

Extraction of mutational signatures from SNV contexts using SigProfiler 954 

We used SigProfiler to extract mutational signatures, relying on the non-negative 955 

matrix factorization (NNMF) method44. In particular, we report the “Decomposed 956 

Solution” output by the package.  957 

 958 

Cosine similarity calculation 959 

To compare two vectors A and B, cosine similarity was calculated as follows:  960 

            
∑     
 
   

√∑   
  

   √∑   
  

   

 

 961 

Analysis of INDEL proportion and gene expression 962 

A list of transcribed regions was retrieved from ENSEMBL using the BioMaRt 963 

package45. We identified the subset of INDEL and SNV variants that overlapped 964 

with the transcribed regions. The proportion of INDELs in comparison to the 965 

total number of INDELs and SNVs per gene was calculated. Gene expression was 966 

assigned using the “liver” dataset from the Genotype-Tissue Expression project46. 967 

To test for the relationship of gene expression on INDEL proportion, we fit a 968 

Poisson regression using the glm function of the R programming language. We 969 

modelled the number of INDELs per gene against an offset of the total number of 970 

variants per gene and the gene’s expression.  971 

 972 

Analysis of T>C transcription strand bias at transcription start sites 973 

We performed this analysis analogously to a published approach22. In short, we 974 

retrieved the genomic coordinates of transcription start sites of the all 975 

overexpressed genes in the liver (GTEx46). We tiled the 10 kilobases up- and 976 

downstream of the transcription start site into 1,000bp bins. We overlapped all 977 

T>C (transcribed) and A>G (untranscribed) variant calls with the tiled regions 978 



and summed the number of variants in each tile across all included genes. We 979 

also extracted the number of T and A bases in each tile. To test whether strand 980 

bias was significant only in transcribed regions, we fit a Poisson regression for 981 

the number of variant calls against the following predictors: strand (transcribed 982 

/ untranscribed), distance from TSS (0 for upstream, 1 for downstream), 983 

aetiology (cirrhosis, no cirrhosis) and used the number of T and A bases in each 984 

tile as the offset variable. 985 

 986 

Analysis of C>A and T>A transcription strand bias 987 

We used the MutationalPatterns package47 to assign the transcription state for 988 

each C>A variant. We retrieved the genomic coordinates of all transcribed 989 

regions from ENSEMBL using the BioMaRt package45 and extracted the 990 

frequencies of C and G nucleotides in these regions. To test for significance of 991 

transcription strand bias, we performed a Poisson regression for the number of 992 

C>A variants in each sample and transcription strand against factor variables for 993 

the transcription strand, the patient ID and an interaction term for the two 994 

factors. We used the C, G nucleotide frequency as an offset variable. To test for 995 

significance of transcription strand bias for a given donor, we coded the patient 996 

ID in a binary fashion: “1” for the target donor, “0” otherwise. We proceeded 997 

analogously to test for transcription strand bias of T>A variants, using A and T 998 

nucleotide frequencies as the offset. 999 

 1000 
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