43 research outputs found

    Value of diffusion weighted MR imaging as an early surrogate parameter for evaluation of tumor response to high-dose-rate brachytherapy of colorectal liver metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the value of diffusion weighted imaging (DWI) as an early surrogate parameter for treatment response of colorectal liver metastases to image-guided single-fraction <sup>192</sup>Ir-high-dose-rate brachytherapy (HDR-BT).</p> <p>Methods</p> <p>Thirty patients with a total of 43 metastases underwent CT- or MRI-guided HDR-BT. In 13 of these patients a total of 15 additional lesions were identified, which were not treated at the initial session and served for comparison. Magnetic resonance imaging (MRI) including breathhold echoplanar DWI sequences was performed prior to therapy (baseline MRI), 2 days after HDR-BT (early MRI) as well as after 3 months (follow-up MRI). Tumor volume (TV) and intratumoral apparent diffusion coefficient (ADC) were measured independently by two radiologists. Statistical analysis was performed using univariate comparison, ANOVA and paired t test as well as Pearson's correlation.</p> <p>Results</p> <p>At early MRI no changes of TV and ADC were found for non-treated colorectal liver metastases. In contrast, mean TV of liver lesions treated with HDR-BT increased by 8.8% (<it>p </it>= 0.054) while mean tumor ADC decreased significantly by 11.4% (<it>p </it>< 0.001). At follow-up MRI mean TV of non-treated metastases increased by 50.8% (<it>p </it>= 0.027) without significant change of mean ADC values. In contrast, mean TV of treated lesions decreased by 47.0% (<it>p </it>= 0.026) while the mean ADC increased inversely by 28.6% compared to baseline values (<it>p </it>< 0.001; Pearson's correlation coefficient of r = -0.257; p < 0.001).</p> <p>Conclusions</p> <p>DWI is a promising imaging biomarker for early prediction of tumor response in patients with colorectal liver metastases treated with HDR-BT, yet the optimal interval between therapy and early follow-up needs to be elucidated.</p

    Cardiac magnetic resonance imaging using an open 1.0T MR platform : a comparative study with a 1.5T tunnel system

    Get PDF
    Background: Cardiac magnetic resonance imaging (cMRI) has become the non-invasive reference standard for the evaluation of cardiac function and viability. The introduction of open, high-field, 1.0T (HFO) MR scanners offers advantages for examinations of obese, claustrophobic and paediatric patients. The aim of our study was to compare standard cMRI sequences from an HFO scanner and those from a cylindrical, 1.5T MR system. Material/Method: Fifteen volunteers underwent cMRI both in an open HFO and in a cylindrical MR system. The protocol consisted of cine and unenhanced tissue sequences. The signal-to-noise ratio (SNR) for each sequence and blood-myocardium contrast for the cine sequences were assessed. Image quality and artefacts were rated. The location and number of non-diagnostic segments was determined. Volunteers' tolerance to examinations in both scanners was investigated. Results: SNR was significantly lower in the HFO scanner (all p0.05). Overall, only few non-diagnostic myocardial segments were recorded: 6/960 (0.6%) by the HFO and 17/960 (1.8%) segments by the cylindrical system. The volunteers expressed a preference for the open MR system (p<0.01). Conclusions: Standard cardiac MRI sequences in an HFO platform offer a high image quality that is comparable to the quality of images acquired in a cylindrical 1.5T MR scanner. An open scanner design may potentially improve tolerance of cardiac MRI and therefore allow to examine an even broader patient spectrum

    In vivo assessment of catheter positioning accuracy and prolonged irradiation time on liver tolerance dose after single-fraction 192Ir high-dose-rate brachytherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess brachytherapy catheter positioning accuracy and to evaluate the effects of prolonged irradiation time on the tolerance dose of normal liver parenchyma following single-fraction irradiation with <sup>192 </sup>Ir.</p> <p>Materials and methods</p> <p>Fifty patients with 76 malignant liver tumors treated by computed tomography (CT)-guided high-dose-rate brachytherapy (HDR-BT) were included in the study. The prescribed radiation dose was delivered by 1 - 11 catheters with exposure times in the range of 844 - 4432 seconds. Magnetic resonance imaging (MRI) datasets for assessing irradiation effects on normal liver tissue, edema, and hepatocyte dysfunction, obtained 6 and 12 weeks after HDR-BT, were merged with 3D dosimetry data. The isodose of the treatment plan covering the same volume as the irradiation effect was taken as a surrogate for the liver tissue tolerance dose. Catheter positioning accuracy was assessed by calculating the shift between the 3D center coordinates of the irradiation effect volume and the tolerance dose volume for 38 irradiation effects in 30 patients induced by catheters implanted in nearly parallel arrangement. Effects of prolonged irradiation were assessed in areas where the irradiation effect volume and tolerance dose volume did not overlap (mismatch areas) by using a catheter contribution index. This index was calculated for 48 irradiation effects induced by at least two catheters in 44 patients.</p> <p>Results</p> <p>Positioning accuracy of the brachytherapy catheters was 5-6 mm. The orthogonal and axial shifts between the center coordinates of the irradiation effect volume and the tolerance dose volume in relation to the direction vector of catheter implantation were highly correlated and in first approximation identically in the T1-w and T2-w MRI sequences (<it>p </it>= 0.003 and <it>p </it>< 0.001, respectively), as were the shifts between 6 and 12 weeks examinations (<it>p </it>= 0.001 and <it>p </it>= 0.004, respectively). There was a significant shift of the irradiation effect towards the catheter entry site compared with the planned dose distribution (<it>p </it>< 0.005). Prolonged treatment time increases the normal tissue tolerance dose. Here, the catheter contribution indices indicated a lower tolerance dose of the liver parenchyma in areas with prolonged irradiation (<it>p </it>< 0.005).</p> <p>Conclusions</p> <p>Positioning accuracy of brachytherapy catheters is sufficient for clinical practice. Reduced tolerance dose in areas exposed to prolonged irradiation is contradictory to results published in the current literature. Effects of prolonged dose administration on the liver tolerance dose for treatment times of up to 60 minutes per HDR-BT session are not pronounced compared to effects of positioning accuracy of the brachytherapy catheters and are therefore of minor importance in treatment planning.</p

    Modified transarterial chemoembolization with locoregional administration of sorafenib for treating hepatocellular carcinoma: feasibility, efficacy, and safety in the VX-2 rabbit liver tumor model

    Get PDF
    PURPOSE:We aimed to assess the feasibility, efficacy and safety of a local application of sorafenib within a conventional transarterial chemoembolization in the VX-2 tumor-bearing rabbit model.METHODS:VX-2 tumors were induced in the left liver lobe of 10 New Zealand White rabbits. After two weeks, growth was verified by contrast-enhanced computed tomography (CT). Five rabbits were treated by transarterial chemoembolization using an emulsion of sorafenib and ethiodized oil (referred to as SORATACE; n=5). Rabbits receiving oral sorafenib for two weeks (n=2) and untreated rabbits (n=3) served as controls. After two weeks, contrast-enhanced CT was performed, followed by animal necropsy.RESULTS:The change in tumor diameter between baseline and follow-up was significantly different in the SORATACE group compared with the other groups; tumor shrinkage was observed in the SORATACE group only (P = 0.016). In both control groups, preserved hypervascularity was seen in the follow-up CT in all but one tumor. All tumors in the SORATACE group were devascularized in the follow-up CT. Importantly, substantial parenchymal damage in nontargeted areas of the tumor-bearing liver lobe was seen in rabbits treated with SORATACE.CONCLUSION:SORATACE demonstrated high efficacy in the treatment of experimental VX-2 liver tumors but was also associated with substantial liver parenchymal toxicity

    Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: tolerance dose of small liver volumes

    Get PDF
    <p>Abstract</p> <p>Backround</p> <p>Hepatic radiation toxicity restricts irradiation of liver malignancies. Better knowledge of hepatic tolerance dose is favourable to gain higher safety and to optimize radiation regimes in radiotherapy of the liver. In this study we sought to determine the hepatic tolerance dose to small volume single fraction high dose rate irradiation.</p> <p>Materials and methods</p> <p>23 liver metastases were treated by CT-guided interstitial brachytherapy. MRI was performed 3 days, 6, 12 and 24 weeks after therapy. MR-sequences were conducted with T1-w GRE enhanced by hepatocyte-targeted Gd-EOB-DTPA. All MRI data sets were merged with 3D-dosimetry data. The reviewer indicated the border of hypointensity on T1-w images (loss of hepatocyte function) or hyperintensity on T2-w images (edema). Based on the volume data, a dose-volume-histogram was calculated. We estimated the threshold dose for edema or function loss as the D<sub>90</sub>, i.e. the dose achieved in at least 90% of the pseudolesion volume.</p> <p>Results</p> <p>At six weeks post brachytherapy, the hepatocyte function loss reached its maximum extending to the former 9.4Gy isosurface in median (i.e., ≥9.4Gy dose exposure led to hepatocyte dysfunction). After 12 and 24 weeks, the dysfunctional volume had decreased significantly to a median of 11.4Gy and 14Gy isosurface, respectively, as a result of repair mechanisms. Development of edema was maximal at six weeks post brachytherapy (9.2Gy isosurface in median), and regeneration led to a decrease of the isosurface to a median of 11.3Gy between 6 and 12 weeks. The dose exposure leading to hepatocyte dysfunction was not significantly different from the dose provoking edema.</p> <p>Conclusion</p> <p>Hepatic injury peaked 6 weeks after small volume irradiation. Ongoing repair was observed up to 6 months. Individual dose sensitivity may differ as demonstrated by a relatively high standard deviation of threshold values in our own as well as all other published data.</p

    Nonrigid 3D Medical Image Registration and Fusion Based on Deformable Models

    Get PDF
    For coregistration of medical images, rigid methods often fail to provide enough freedom, while reliable elastic methods are available clinically for special applications only. The number of degrees of freedom of elastic models must be reduced for use in the clinical setting to archive a reliable result. We propose a novel geometry-based method of nonrigid 3D medical image registration and fusion. The proposed method uses a 3D surface-based deformable model as guidance. In our twofold approach, the deformable mesh from one of the images is first applied to the boundary of the object to be registered. Thereafter, the non-rigid volume deformation vector field needed for registration and fusion inside of the region of interest (ROI) described by the active surface is inferred from the displacement of the surface mesh points. The method was validated using clinical images of a quasirigid organ (kidney) and of an elastic organ (liver). The reduction in standard deviation of the image intensity difference between reference image and model was used as a measure of performance. Landmarks placed at vessel bifurcations in the liver were used as a gold standard for evaluating registration results for the elastic liver. Our registration method was compared with affine registration using mutual information applied to the quasi-rigid kidney. The new method achieved 15.11% better quality with a high confidence level of 99% for rigid registration. However, when applied to the quasi-elastic liver, the method has an averaged landmark dislocation of 4.32 mm. In contrast, affine registration of extracted livers yields a significantly () smaller dislocation of 3.26 mm. In conclusion, our validation shows that the novel approach is applicable in cases where internal deformation is not crucial, but it has limitations in cases where internal displacement must also be taken into account

    Hybrid Approach for Biliary Interventions Employing MRI-Guided Bile Duct Puncture with Near-Real-Time Imaging

    No full text
    To assess the feasibility of a hybrid approach employing MRI-guided bile duct (BD) puncture for subsequent fluoroscopy-guided biliary interventions in patients with non-dilated (ae3 mm) or dilated BD (ae3 mm) but unfavorable conditions for ultrasonography (US)-guided BD puncture. A total of 23 hybrid interventions were performed in 21 patients. Visualization of BD and puncture needles (PN) in the interventional MR images was rated on a 5-point Likert scale by two radiologists. Technical success, planning time, BD puncture time and positioning adjustments of the PN as well as technical success of the biliary intervention and complication rate were recorded. Visualization even of third-order non-dilated BD and PN was rated excellent by both radiologists with good to excellent interrater agreement. MRI-guided BD puncture was successful in all cases. Planning and BD puncture times were 1:36 +/- 2.13 (0:16-11:07) min. and 3:58 +/- 2:35 (1:11-9:32) min. Positioning adjustments of the PN was necessary in two patients. Repeated capsular puncture was not necessary in any case. All biliary interventions were completed successfully without major complications. A hybrid approach which employs MRI-guided BD puncture for subsequent fluoroscopy-guided biliary intervention is feasible in clinical routine and yields high technical success in patients with non-dilated BD and/or unfavorable conditions for US-guided puncture. Excellent visualization of BD and PN in near-real-time interventional MRI allows successful cannulation of the BD

    Freehand direct arthrography of the shoulder using near real-time guidance in an open 1.0-T MRI scanner

    No full text
    To assess the technical success and duration of magnetic resonance imaging (MRI)-guided freehand direct shoulder arthrography (FDSA) with near real-time imaging implemented in a routine shoulder MRI examination on an open 1.0-T MRI scanner, and to assess the learning curve of residents new to this technique. An experienced MRI interventionalist (the expert) performed 125 MRI-guided FDSA procedures, and 75 patients were treated by one of three residents without previous experience in MRI-guided FDSA. Technical success rate and duration of MRI-guided FDSA of the expert and the residents were compared. The residents' learning curves were assessed. The occurrence of extra-articular deposition and leakage of contrast media from the puncture site and the subsequent impairment of image interpretation were retrospectively analyzed. Overall technical success was 97.5 %. The expert needed overall fewer puncture needle readjustments and was faster at puncture needle positioning (p < 0.01). The learning curve of the residents, however, was steep. They leveled with the performance of the expert after aeaEuroe15 interventions. With a minimal amount of training all steps of MRI-guided FDSA can be performed in 10 min. Magnetic resonance-guided FDSA in an open 1.0-T MRI scanner can be performed with high technical success in a reasonably short amount of time. Only a short learning curve is necessary to achieve expert level

    Joint deformable liver registration and bias field correction for MR-guided HDR brachytherapy

    No full text
    In interstitial high-dose rate brachytherapy, liver cancer is treated by internal radiation, requiring percutaneous placement of applicators within or close to the tumor. To maximize utility, the optimal applicator configuration is pre-planned on magnetic resonance images. The pre-planned configuration is then implemented via a magnetic resonance-guided intervention. Mapping the pre-planning information onto interventional data would reduce the radiologist's cognitive load during the intervention and could possibly minimize discrepancies between optimally pre-planned and actually placed applicators. We propose a fast and robust two-step registration framework suitable for interventional settings: first, we utilize a multi-resolution rigid registration to correct for differences in patient positioning (rotation and translation). Second, we employ a novel iterative approach alternating between bias field correction and Markov random field deformable registration in a multi-resolution framework to compensate for non-rigid movements of the liver, the tumors and the organs at risk. In contrast to existing pre-correction methods, our multi-resolution scheme can recover bias field artifacts of different extents at marginal computational costs. We compared our approach to deformable registration via B-splines, demons and the SyN method on 22 registration tasks from eleven patients. Results showed that our approach is more accurate than the contenders for liver as well as for tumor tissues. We yield average liver volume overlaps of 94.0 +/- 2.7% and average surface-to-surface distances of 2.02 +/- 0.87 mm and 3.55 +/- 2.19 mm for liver and tumor tissue, respectively. The reported distances are close to (or even below) the slice spacing (2.5 - 3.0 mm) of our data. Our approach is also the fastest, taking 35.8 +/- 12.8 s per task. The presented approach is sufficiently accurate to map information available from brachytherapy pre-planning onto interventional data. It is also reasonably fast, providing a starting point for computer-aidance during intervention
    corecore