33 research outputs found

    Nondata-Aided Rician Parameters Estimation With Redundant GMM for Adaptive Modulation in Industrial Fading Channel

    Get PDF
    Wireless networks have been widely utilized in industries, where wireless links are challenged by the severe nonstationary Rician fading channel, which requires online link quality estimation to support high-quality wireless services. However, most traditional Rician estimation approaches are designed for channel measurements and work only with nonmodulated symbols. Then, the online Rician estimation usually requires a priori aiding pilots or known modulation order to cancel the modulation interference. This article proposes a nondata-Aided method with redundant Gaussian mixture model (GMM). The convergence paradigm of GMM with redundant subcomponents has been analyzed, guided by which the redundant subcomponents can be iteratively discriminated to approach the global optimization. By further adopting the constellation constraint, the probability to identify the redundant subcomponent is significantly increased. As a result, accurate estimation of the Rician parameters can be achieved without additional overhead. Experiments illustrate not only the feasibility but also the near-optimal accuracy

    Wireless Fractal Cellular Networks

    Get PDF
    With the seamless coverage of wireless cellular networks in modern society, it is interesting to consider the shape of wireless cellular coverage. Is the shape a regular hexagon, an irregular polygon, or another complex geometrical shape? Based on fractal theory, the statistical characteristic of the wireless cellular coverage boundary is determined by the measured wireless cellular data collected from Shanghai, China. The measured results indicate that the wireless cellular coverage boundary presents an extremely irregular geometrical shape, which is also called a statistical fractal shape. Moreover, the statistical fractal characteristics of the wireless cellular coverage boundary have been validated by values of the Hurst parameter estimated in angular scales. The statistical fractal characteristics of the wireless cellular coverage boundary can be used to evaluate and design the handoff scheme of mobile user terminals in wireless cellular networks.Comment: 16 pages, 4 figure

    A novel compressive sensing based Data Aggregation Scheme for Wireless Sensor Networks

    No full text
    International audienceThe random distribution of sensors and the irregularityof routing paths lead to unordered sensory datawhich are difficult to deal with in Wireless Sensor Networks(WSNs). However, for simplicity, most existing researches ignorethose characteristics in the designs of Compressive Sensingbased Data Aggregation Schemes (CSDAS). Since conventionalsparsification bases (e.g., DCT, Wavelets) are inefficient to dealwith unordered data, performances of CSDAS with conventionalbases are inevitably constrained. In this work, a novel CSDASwhich adopts Treelet transform as a sparse transformation toolis proposed. Our CSDAS is capable to exploit both spatialrelevance and temporal smoothness of sensory data. Moreover,our CSDAS contains a novel correlation based clustering strategywhich is realized with the localized correlation structure ofsensory data returned by Treelets and facilitates energy saving ofCSDAS in WSNs. Comparative results show the reconstructionerror rate with adopting Treelet transform in CSDAS is about18% lower than that of conventional ones when the normalizedenergy consumption is 0.3. Even larger performance gain willbe obtained at higher energy consumption level. Meanwhile,simulations results further show that our novel correlation basedclustering strategy is of great potential. Specially, there is a gain ofroughly 35% for total energy savings with our proposed clusteringstrategy

    A Source Anonymity-Based Lightweight Secure AODV Protocol for Fog-Based MANET.

    No full text
    Fog-based MANET (Mobile Ad hoc networks) is a novel paradigm of a mobile ad hoc network with the advantages of both mobility and fog computing. Meanwhile, as traditional routing protocol, ad hoc on-demand distance vector (AODV) routing protocol has been applied widely in fog-based MANET. Currently, how to improve the transmission performance and enhance security are the two major aspects in AODV's research field. However, the researches on joint energy efficiency and security seem to be seldom considered. In this paper, we propose a source anonymity-based lightweight secure AODV (SAL-SAODV) routing protocol to meet the above requirements. In SAL-SAODV protocol, source anonymous and secure transmitting schemes are proposed and applied. The scheme involves the following three parts: the source anonymity algorithm is employed to achieve the source node, without being tracked and located; the improved secure scheme based on the polynomial of CRC-4 is applied to substitute the RSA digital signature of SAODV and guarantee the data integrity, in addition to reducing the computation and energy consumption; the random delayed transmitting scheme (RDTM) is implemented to separate the check code and transmitted data, and achieve tamper-proof results. The simulation results show that the comprehensive performance of the proposed SAL-SAODV is a trade-off of the transmission performance, energy efficiency, and security, and better than AODV and SAODV

    Neighbor-aware multiple access protocol for 5G mMTC applications

    No full text

    A Source Anonymity-Based Lightweight Secure AODV Protocol for Fog-Based MANET

    No full text
    Fog-based MANET (Mobile Ad hoc networks) is a novel paradigm of a mobile ad hoc network with the advantages of both mobility and fog computing. Meanwhile, as traditional routing protocol, ad hoc on-demand distance vector (AODV) routing protocol has been applied widely in fog-based MANET. Currently, how to improve the transmission performance and enhance security are the two major aspects in AODV’s research field. However, the researches on joint energy efficiency and security seem to be seldom considered. In this paper, we propose a source anonymity-based lightweight secure AODV (SAL-SAODV) routing protocol to meet the above requirements. In SAL-SAODV protocol, source anonymous and secure transmitting schemes are proposed and applied. The scheme involves the following three parts: the source anonymity algorithm is employed to achieve the source node, without being tracked and located; the improved secure scheme based on the polynomial of CRC-4 is applied to substitute the RSA digital signature of SAODV and guarantee the data integrity, in addition to reducing the computation and energy consumption; the random delayed transmitting scheme (RDTM) is implemented to separate the check code and transmitted data, and achieve tamper-proof results. The simulation results show that the comprehensive performance of the proposed SAL-SAODV is a trade-off of the transmission performance, energy efficiency, and security, and better than AODV and SAODV

    A Novel Low-Cost Real-Time Power Measurement Platform for LoWPAN IoT Devices

    No full text
    With the rapid development of technology and application for Internet of Things (IoT), Low-Power Wireless Personal Area Network (LoWPAN) devices are more popularly applied. Evaluation of power efficiency is important to LoWPAN applications. Conventional method to evaluate the power efficiency of different LoWPAN devices is as follows: first measure the current of the devices under working/idle/sleep state and then make an average and estimation of the lifetime of batteries, which deeply relied on the accuracy of testing equipment and is not that accurate and with high cost. In this work, a low-cost, real-time power measurement platform called PTone is proposed, which can be used to detect the real-time power of LoWPAN devices (above 99.63%) and be able to determine the state of each module of DUT system. Based on the PTone, a novel abnormal status diagnosis mechanism is proposed. The mechanism can not only judge abnormal status but also find accurate abnormal status locating and classify abnormal status accurately. According to the method, each state of Device Under Test (DUT) during wireless transmission is estimated, different abnormal status can be classified, and thus specific location of abnormal module can be found, which will significantly shorten the development process for LoWPAN devices and thus reduce costs

    The Fabrication of Porous Si with Interconnected Micro-Sized Dendrites and Tunable Morphology through the Dealloying of a Laser Remelted Al–Si Alloy

    No full text
    Coral-like porous Si was fabricated through the dealloying of a laser remelted as-cast AlSi12 alloy(Al-12 wt % Si). The porous Si was composed of interconnected micro-sized Si dendrites and micro/nanopores, and compared to flaky Si, which is fabricated by direct dealloying of the as-cast AlSi12 alloy. The structure of the porous Si was attributed to the dendritic solidification microstructure formed during the laser remelting process. The micropore size of the porous Si decreased from 4.2 μm to 1.6 µm with the increase in laser scanning velocity, indicating that the morphology of porous Si could be easily altered by simply controlling the laser remelting parameters. The coral-like porous Si provided enough space, making it promising for high-performance Si-based composite anode materials in lithium-ion batteries. The proposed hybrid method provides a straightforward way of tuning the porous structure in the dealloyed material
    corecore